Floral and Bird Biodiversity of Dingaputa Haor and Its Surrounding Area of Mohangong Upazila, Netrakona District

Md. Jahirul Islam¹, Md. Anisuzzaman², Md. Jahangir Sarker², Maruf Hossain Minar^{3,*}, Md. Zihad Majumdar⁴, Tawfiqul Islam⁴

¹Department of Environmental Science, Bangladesh Agricultural University, Mymensingh
²Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur, Noakhali
³Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh
⁴Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh
*Corresponding author: minarfims02@gmail.com

Received July 10 2013; Revised July 18, 2013; Accepted July 27, 2013

Abstract The study was undertaken at Dingaputa haor and its surrounding area with a view to investigate the biodiversity of plants, and birds. The taxonomic status of the species of the area was categorized into threatened, endangered, common, few and very few based on their richness, uses and conservational viewpoints. The total number of plant observed 152 species under 79 families and 37 species of birds under 24 families. The present total species diversity index (H) represent that plants belonged that 71 (1.27) species, 41 families. Cultivated crops have 24 species (2.40) and 11 families. The weeds had 57 species (1.51) and 23 families. The birds had 37 species (1.89) and 24 families, other aquatic faunal species 17 (2.66) and 16 families. In the biodiversity of Dingaputa haor was decreasing day by day. Agricultural crops and other aquatic fauna were listed maximum but plants, and weeds diversity index were minimum.

Keywords: biodiversity, Dingaputa haor, biodiversity index, plants of haor

Cite This Article: Islam, Md. Jahirul, Md. Anisuzzaman, Md. Jahangir Sarker, Maruf Hossain Minar, Md. Zihad Majumdar, and Tawfiqul Islam, "Floral and Bird Biodiversity of Dingaputa Haor and Its Surrounding Area of Mohangong Upazila, Netrakona District." *World Journal of Agricultural Research* 1, no. 4 (2013): 70-76. doi: 10.12691/wjar-1-4-5.

1. Introduction

Bangladesh is rich in wetland resources. There are about 1, 14,160 hectares of *beels*, 1, 92,367 hectares of haors and about 5488 hectares of *baors* are located here and there in Bangladesh. Among 96 *haors* of the country, most of the *haors* lie in the district of Kishoregonj, Netrakona, Kushtia, Habigonj, Sunamganj, Moulvibazar and Sylhet [1]. *Dingaputa haor* is the inland freshwater wetland ecosystem, located at Mohonganj upazila of Netrakona district. It is also important for the conservation and sustainable utilization of wetlands. The surface area of Dingaputa Haor is 49 km2. The *haor* is located at (Figure 1) 24°52'00"N 90°58'00"E / 24.8667°N 90.9667°E. The word '*haor*' basically derived from the word '*saior*' which is the local pronunciation of *sagor* in *haor* region [2].

The term biodiversity has been widely used, misused and interpreted [3]. Article 2 of the Convention on Biological Diversity [4] defines biological diversity as: The variability among living organisms from all sources including, interalia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; this includes diversity within species, between species and of ecosystems [5]. Bangladesh is enriched with her diversity of aquatic biological resources containing 289 species of freshwater finfish belonging to 55 families (placing Bangladesh third in the world in terms of fish species per land area), 150 species of waterfowl, 50 species of reptiles. 24 species of mammals, 19 species of amphibians, 63 species of palaemonid and penaeid prawns [6,7,8], 25 species of edible tortoise and turtles, and 17 species of crabs, freshwater mussels, and snails. Moreover, 15 exotic fish species also contributed and diversified total fishery resources of the country [6]. The world-wide loss of biodiversity is widely accepted as a major problem, yet it is poorly documented because of our poor knowledge on the taxonomy of most organisms [9].

Some partial research works on biodiversity of Bangladesh were conducted by Islam [10], Safiullah [11] and Rahman [6]. But no research was yet carried out on biodiversity of the *Dingaputa* and its surrounding areas in the past. Keeping these views in mind the study was undertaken to identify present status of plant biodiversity and the causes of loss of wetland biodiversity of this *Dingaputa* hoar.

2. Materials and Methods

2.1. Geographical Location of the Study Area

The study area is located within the Mohonganj upazila at approximately between the latitudes of 24°52′00″N to

24.8667°N and between the longitudes of 90°58′00″E to 90.9667°E in Netrakona District in the Dhaka division of Bangladesh. It has 24011 units of house hold and total area243.2 km². It is located 30 km east from Netrakona district. The study was conducted for a period of July to October, 2010.

Figure 1. Study area

2.2. Biological Environment Condition of the Study Area

The Biological environment covers a vast area of flora and faunal species cultivated and observed in the study locality. Cereals, pulses crops, wood and fruit trees mainly consist of the plant community where small indigenous fishes along with cultivated species of fish and some common waterfowls and birds documented the fanual scenario. Some wild mammals, common reptiles and amphibians also found on the study area

2.3. Source of Data Collection

During collection of data both primary and secondary sources are considered. Primary data were collected from fishermen and fermer by the researcher himself. The secondary information was collected from fisheries offices, Agriculture offices, at Mohonganj upazila. The researcher collected information detailed on flora and fauna having diversity by spot visit. Several visits are made to the study area to collect accurate information.

2.4. Floral and Faunal Diversity Analysis

After completion of the study in the selected area of *Dingaputa haor*, the researcher discussed the floral and faunal information into the distinct systemic category to easily find out the status of the exist and extinct species of the area. The information of areas floral and fauna are arranged and tabulated in the scientific way with a view to clarifying the objectives of the study and concluded the biodiversity status of the selected area.

2.5. Species Diversity Index

Species diversity differs from species richness in that it takes into account both the numbers of species present and the dominance or evenness of species in relation to one another. As a measure of species diversity, we will calculate the Shannon index, H. Interestingly Shannon, a physicist, developed the index as a formula for measuring the entropy of matter in the universe. It turns out that the mathematical relationships hold true whether one is dealing with molecules in solution or species in an ecological community.

Where Pi is the proportional abundance of ith species such that Pi = n/N n is the number of the individuals in ith

species and N is the total number of the individuals in ith species and N is the total number of the individuals of all species in the community

3. Results and Discussion

3.1. Floral Biodiversity Analysis

3.1.1. Biodiversity of Plants

Dingaputa haor contained a very dense swamp forest in the past, but deforestation and the lack of conservation practices had virtually destroyed this unique forest in the last two decades. The people in the vicinity used this material in various ways: for example as roofing, wall or wall panel material for their houses and for making mats. The utilization of wetland products was now less intensive, because in recent years the vegetation had decreased considerably. Some common type of tree species about 71 were recorded fewer than 41 families, when the *haor* had been visited.

Another important use of the resources from this wetland was for fuel wood. Due to the scarcity of fuel wood around homesteads, the people were becoming increasingly dependent on this source of fuel. Swamp forest trees, except for hijol, were the most popular fuel wood in these areas. However, all woody shrubs including grasses were also used for this purpose. The naturally regenerating saplings in the swamp forests were being harvested at a non sustainable rate because of the scarcity of fuel. Wetlands products were also used as bio-fertilizer or green manure. All the small herbs and grasses grown in the haor were used as green manure. Farmers living around the Haor used these materials instead of chemical fertilizer. There were many aquatic plants which were grown in the Haor area, and were used as food, medicinal plants, duck feed, or for fuel.

3.1.2. Timber Plants of the Study Area

The recorded timbered plants in the *dingaputa haor* were 19 belonging to 15 families where all the species are tree (Table 1). Mimosae were the largest families having 2 species and other families have only one species. The species abundance of swamp tree Koroch (*Pongamia pinnata*), Hijol (*Barringtonia acutangula*) and Borun (*Crataeva nurvala*) but the plantation richness of the Raintree (*Samania saman*), and Mahogoni (*Swietenia macrophylla*).

3.1.3. Fruit Plants of the Study Area

Under the fruit plant species, a total of 28 plants have been recorded under 14 families having 1 herb and 27 trees. Four palms, 1 herb and 23 tree fruit plants were observed in the area with the abundance of Mango and Banana (Table 2). Rutaceae was the biggest family with 5 species and Musaceae was the lowest family with single species. Moraceae 2 species, Myrtaceae 2 species, Euphorbiaceae 3 species, Palmaceae had 4 species and Anacardiaceae, Combretaceae, Caesalpinieae, Elaeocarpaceae, Averrhoaceae, Rhamnaceae, Dilleniaceae, Clusiaceae, Ebenaceae, Punicaceae, Caricaceae, and Musaceae had only one species of each.

Table 1. Timber plant species observed selected in the haor area					
Local Name	Scientific name	Family name	Habit		
1.Koroch	Pongamia pinnata	Leguminosea e	Swamp Tree		
2.Hijol	Barringtonia acutangula	Lecythidacea e	Swamp Tree		
3.Borun	Crataeva nurvala	Capparidacea e	Swamp Tree		
4.Shimul	Bombax ceiba	Bombacaceae	Tree		
5.Jarul	Lagerstroemia apeciosa	Lythraceae	Tree		
6.Mander	Erythrina variegate	Papilionaceae	Tree		
7.Jiga	Garuga pinnata	Burseraceae	Tree		
8.Kadam	adam Anthocephalus chinensis		Tree		
9.Sheora	Sterblus asper	Urticaceae	Tree		
10.Raintree	Samania saman	Mimosaceae	Tree		
11.Sissoo	Dalbergia sissoo	Papilionaceae	Tree		
12.Eucalyptus	Eucalyptus camaldulensis	Myrtaceae	Tree		
13.Akashmoni	Acacia auriculiformis	Mimosaceae	Tree		
14.Akashi	Dillenia scabrellarobx	Dilleniaceae	Tree		
15.Mahogoni	Swietenia macrophylla	Meliaceae	Tree		
16.Bot	Ficus bengalensis	Moarceae	Tree		
17.Sada koroi	Albizia procera	Mimosaceae	Tree		
18.Kala koroi	Albizia lebbeck	Mimosaceae	Tree		
19.Bamboo	Bambusa aurundinaceae	Gramineae	Tree		

Table 2. Fruit plant species identified in the study area

Local Name	Scientific name	Family name	Habit
1.Am	Mangifera indica	Anacardiaceae	Tree
2. Kanthal	Artocarpus heterophyllus	Moraceae	Tree
3.Dewa	Artocarpus lakoocha	Moraceae	Tree
4.Jam	Syzygium cumini	Myrtaceae	Tree
5.Payra	Psidium guajava	Myrtaceae	Tree
6.Bel	Aegle marmelos	Rutaceae	Tree
7.Jamrul	Citrus grandis	Rutaceae	Tree
8.Jambura	Citrus grandis	Rutaceae	Tree
9.Pati lebu	Citrus limon	Rutaceae	Tree
10.Kazi lebu	Citrus aurantifolia	Rutaceae	Tree
11.Horitoki	Terminalia chebula	Combretaceae	Tree
12.Tantul	Tamarindus indica	Caesalpinieae	Tree
13.Jalpai	Elaeocarpus robustus	Elaeocarpaceae	Tree
14.Kamranga	Averrhoa carambola	Averrhoaceae	Tree
15.Boroi	Zizyphus mauritiana	Rhamnaceae	Tree
16.Chalta	Dillenia indica	Dilleniaceae	Tree
17.Lotkon/bubi	Baccaurea ramiflora	Euphorbiaceae	Tree
18.Amloki	Phyllanthus embelica	Euphorbiaceae	Tree
19. Aorbaroi	Phyllanthus acidus	Euphorbiaceae	
20.Dafol	Garcinia xanthochymus	Clusiaceae	Tree
21. Gab	Diospyros peregrina	Ebenaceae	Tree
22.Dalim	Punica granatum	Punicaceae	Tree
23.Papay	Carica papaya	Caricaceae	
24.Banana	Musa sapientum	Musaceae	Herb
25.Tal	Borassus flabellifer	Palmaceae	Palm
26.Narikel	Cocos nucifera	Palmaceae	Palm
27.Shupari	Areca catechu	Palmaceae	Palm
28.Khejur	Phoenix sylvestris	Palmaceae	Palm

3.1.4. Medicinal Plants of the Study Area

Only 11 species 8 families of medicinal plants was found in the haor area with species abundance of Chatim (Alstonia macrophylla) and Mehedi (Lawsonia mermis). Tulsi belong to Labiatae, Dhutora belong to Solanaceae, Tankuni belong to Umbelliferae were the most common species of the wild medicinal plants. According to family, Solanaceae had 3 species, Meliaceae 2 species, and Mimosae, Labiatae, Combretaceae, Lythraceae, Apocynaceae, Umbelliferae having single species (Table 3).

Local Name	Scientific name	Family name	Habit
1.Neem	Azadirachta indica	Meliaceae	Tree
2.Lazzabati	Mimosa pudica	Mimosae	Herb
3.Tulsi	Ocimum sanctum	Labiatae	Herb
4.Dhutora	Datura metel	Solanaceae	Shrub
5.Bontamak	Nicotiana plumbaginifolia	Solanaceae	Herb
6.Bonbegun	Solanum fexox	Solanaceae	Shrub
7.Arjun	Terminalia arjuna	Combretaceae	Tree
8.Mehedi	Lawsonia mermis	Lythraceae	Tree
9.Chatim	Alstonia macrophylla	Apocynaceae	Tree
10.Tankuni	Hydrocotyle asiatica	Umbelliferae	Herb
11.Pitraj	Amoora rohituka	Meliaceae	Tree

Table 3. Medicinal plant species observed in the area

3.1.5. Ornamental Plants of the Study Area

Identified species of existing ornamentals were 13 with 2 herbs, 3 trees and 8 shrubs in the haor area (Table 4). Compositae with 2, Oleaceae 2 and 1 species of Magnoliaceae, Rosaceae, Malvaceae, Amaranthaceae, Euphorbiaceae, Rubiaceae, Lythraceae, Sapotaceae, and Leguminosae were recorded in the Dingaputa haor area.

Local Name	Scientific name	Family name	Habit
1.Dahlia	Dahlia imperialis	Compositae	Herb
2.Gendaphul	Tagetes erecta	Compositae	Herb
3.Beli	Jasminum sambac	Oleaceae	Shrub
4.Shafaly	Nyctanthes arbotristis	Oleaceae	Shrub
5.Champa	Michelia champacea	Magnoliaceae	Shrub
6.Golap	Rosa Spp.	Rosaceae	Shrub
7.Joba	Hibiscus rosasinensis	Malvaceae	Shrub
8.Muragphul	Celosia argentea	Amaranthaceae	Shrub
9.Pata bahar	Codiaeum variegatum	Euphorbiaceae	Shrub
10.Gandharaj	Gardenia jasminoides	Rubiaceae	Shrub
11.Mehedi	Lawsonia inermis	Lythraceae	Tree
12.Bakul	Mimusops elengi	Sapotaceae	Tree
13.Krishnachura	Delonix regia	Leguminosae	Tree

Table 4. Ornamental plant species identified in the area

3.2. Species Diversity Index of Plants

Species diversity index is a measure which renders considerable ecological insight (Magurran, 1988). Shannon-Wiener Index of species diversity (H) was worked out to examine the species richness and abundance distribution in *haor* area.

Fable 5	. Formula	of	plant	species	diversit	tv	index	Н

Species	No. of individual	(pl)	ln pl	$-\Sigma(pl) \left ln \ pl \right $
Fruit	28	0.394	-0.93	0.93
Timber	19	0.27	-1.31	1.31
Ornament	13	0.18	-1.69	1.69
Medicine	11	0.154	-1.87	1.87
Total	71	1.00		

The diversity index varies between the different groups of plant species (Table 5). The results show that diversity and abundance was higher for medicinal species than for other plant species in *haor* area. The reason might be that people of the locality like to planting fruit and timber for economic purpose and their needs of fruits. It may also be due to *haor* land is more fertile and support to grow fruit species than other.

3.2.1. Biodiversity of Crops

A total number of 24 agricultural crops, among them 2 were recorded as cereal crops, 3 were as oil crops, 5 were as pulses crops, 3 were as cash crops, and 11 were as vegetable crops under 11 families (Table 6). Leguminosae and cucurbitaceae family have the highest number of crops. Some crops cultivation at *Dingaputa haor* region. As there was no germplasm museum at *haor* areas for long preservation of seeds of all crops and as the fertility level increased day by day, the status of crop biodiversity became poor. Rice cultivation and cattle grazing during dry season in the vast area of *haor* especially buffaloes, cows, goats etc. were found when visited the *boitakali beel* of the *haor* (Table 6).

Table 6. Crops species identified in the area

Local Name	name	Family name	Group name
01. Rice*	Oryza sative	Gramineae	Cereal crops
02. Wheat	Triticum aestivum	Gramineae	Cereal crops
03.Mustard	Brassica campestris	Cruciferae	Oil crops
04.Sesame	Sesamum indicum	Peladiaceae	Oil crops
05.Groundnut	Arachis hypogae	Leguminosae	Oil crops
06.Chickpea	Cicer culinaris	Leguminosae	Pulse crops
07.Cowpea	Vigna unguiculata	Leguminosae	Pulse crops
08.Blck gram	Vigna mungo	Leguminosae	Pulse crops
09.Grasspea	Lathyrus stivus	Leguminosae	Pulse crops
10.Arhar	Cajanus cajan	Papilionaceae	Pulse crops
11.Jute	Chrchorus capsularis	Tilaceae	Cash crops
12.Chili	Capsicum frutescens	Solanaceae	Cash crops
13.Garlic	Alium cepa	Liliaceae	Cash crops
14.Potato	Solanum tuberosum	Solanaceae	Vegetable crops
15.Tomato	Lycopersicom esculentum	Solanaceae	Vegetable crops
16.Brinjal	Solanum melongena	Solanaceae	Vegetable crops
17.Radish	Raphanus sativas	Cruciferae	Vegetable crops
18.Carrot	Daucus carota	Umbelliferae	Vegetable crops
19.Sweet potato	Ipomoea batatus	Convolvulaceae	Vegetable crops
20.Spinach	Spinacia oleracea	Chenopodiaceae	Vegetable crops
21.Sweet gourd	Cucurbita moschta	Cucurbitaceae	Vegetable crops
22.Sponge gourd	Luffa cylindrical	Cucurbitaceae	Vegetable crops
23.Pointed gourd	Trichosanthes dioica	Cucurbitaceae	Vegetable crops
24.Bitter gourd	Momordica charantia	Cucurbitaceae	Vegetable crops

*Rice Varity BR 14, 47, 19, BR 28, 29, BORO

3.3. Weeds Biodiversity

3.3.1. Aquatic Weeds

A total number of 18 aquatic weeds were found in the area of Dingaputa haor and its surrounding belong to 11 families having 1 shrub, 3 grasses and 14 herbs species (Table 2). The total genus of completely aquatic species was 10 bearing the dominant species Nymphaea pubescens (Sada Shapla) and Hygrorhiza aristata (Dol). Gramineae was the largest and Azollaceae was the minor family based on their species abundance in the area. Family Convolvulaceae having 2 species,Pontederiaceae 2 species, Polygonaceae 2 species, Cyperaceae 3 species, Compositae 1 species, Araceae 1 species and Amaranthaceae 1 species each (Table 7).

Table	7.	Aq	uatic	weeds	in	study	area

Local Name	Scientific name	Family name	Habit
1.Kachuripana	Eichhornia crassipes	Pontederiaceae	Herb
2.Panikachu	Monochoria hastata	Pontederiaceae	Herb
3.Khudipana	Azolla pinnata	Azollaceae	Herb
4.Dol	Hygrorhiza aristata	Graminae	Herb
5.Arial	Leersia hexaandra	Graminae	Herb
6.Khudey shama	Echinochola crusglli	Graminae	Herb
7.Topapana	Pistia statiotes	Araceae	Herb
8.Panimorich	Polygonum orientale	Polygonaceae	Herb
9.Biskatali	Polygonum hydropiper	Polygonaceae	Herb
10.Shapla	Nymphaea nouchli	Nymphaeaceae	Herb
11.Kolmilota	Ipomoea aquatica	Convolvulaceae	Shrub
12.Dholkalmi	Ipomoea fistulosa	Convolvulaceae	Herb
13.Malancha	Alternanthera philoxeroides	Amaranthaceae	Herb
14.Halancha	Enhydra fluctuans	Compositae	Herb
15.Chechra	Scirpus mucronatus	Cyperaceae	Grass
16.Jonia	Fimbristylis miliacea	Cyperaceae	Grass
17.Keshur	Cyperus michelianus	Cyperaceae	Grass
18.Panilong	Ludwigia hyssopifolia	Onagraceae	Herb

3.3.2. Land Weeds

Identified species of existing weeds were 39 under 16 families having 4 Shurb, 1 climber, 23 herbs and 11 grasses in the wetlands (Table 8). Grminaeae with 9, Cyperaceae 7, Commelinacae 3, Compositae 3, Amaranthaceae 3, Leguminosae 4, and Umbelliferae, Dryopteidaceae, Cruciferae, Cuscutaceae, Oxalidaceae, Boraginaceae, Bixaceae, Araceae, Poaceae with single genus and single species (Table 8).

-	Table 8. Land weed	s in study area	
Local Name	Scientific name	Family name	Habit
1.Prem Kata	Chrysopogon aciculatus	Graminae	Grass
2.Gaicha	Paspalum commersonii	Graminae	Grass
3.Durba	Cynodon dactylon	Graminae	Grass
4.Chelagash	Parapholis strigosa	Graminae	Grass
5.Chapra	Eleusine indica	Graminae	Grass
6.Monagash	Paspalum commersonii	Graminae	Grass
7.Chiragash	Eragrostis gangetica	Graminae	Grass
8.Carpetgash	Axonopus compressus	Graminae	Grass
9.Anguligash	Digitaria sanguinalis	Graminae	Grass
10.Ulu	Imperata cylindrical	Cyperaceae	Grass
11.Mutha	Cyperus rotundus	Cyperaceae	Herb
12.Holde mutha	Cyperus esculentus	Cyperaceae	Herb
13.Bara chucha	Cyperus iria	Cyperaceae	Herb
14.Sabuj nakful	Cyperus difformis	Cyperaceae	Herb
15.Jonia	Fimbristlis miliacea	Cyperaceae	Shrub
16.Shakta khagra	Cyperus pilosus	Cyperaceae	Shrub
17.Chanchi	Alternanthera sessilis	Amaranthaceae	Herb
18.Katanotey	Amaranthus spinosus	Amaranthaceae	Herb
19.Shanknotey	Amaranthus viridis	Amaranthaceae	Herb
20.Ghagra	Xanthium italicum	Composita	Shrub
21.Shial mutra	Blumea lacera	Composita	Herb
22.Bontula	Sonchus arvensis	Composita	Herb
23.Kanibashi	Commelina benghalensis	Commelinaceae	Herb
24.Bothua	Chenopodium album	Commelinaceae	Herb
25.Halud nakful	Wahlecbergia marginata	Commelinaceae	Herb
26.Dhekishak	Dryopteris serrato-dentata	Dryopteidaceae	Herb
27.Ban sharisha	Brassica kaber	Cruciferae	Herb
28.Bonhalud	Bixa orellana	Bixaceae	Herb
29.Thankuni	Hydrocotyle asiatica	Umbelliferae	Herb
30.Lazzabait	Mimosa pudica	Leguminosae	Shrub
31.Bhatshola	Aeschynomene aspera	Leguminosae	Herb
32.Arich	Cassia tora	Leguminosae	Herb
33.Banmosur	Vicia sativa	Leguminosae	Herb
34.Ban palog	Rumex maritimus	Polygonaceae	Herb
35.Amrul	Oxalis europaea	Oxalidaceae	Herb
36.Hatisur	Heliotropium indicum	Boraginaceae	Herb
37.Kachu	Colocasia esculenta	Araceae	Herb
38. Sharnalata	Cuscuta reflexa	Cuscutaceae	Climber
39. Nol	Arundo donax	Poaceae	Grass

3.4. Biodiversity of Birds

3.4.1. Migratory

The *haor* is an ideal place for the migratory birds. Every winter about many types of migratory birds come to this *haor* and make their temporary habitat here (Table 9). Several bands of local poachers set poison traps on the bank of the Haor during the winter, although killing or trapping migratory birds was legally prohibited and a punishable act. The migratory birds were flying and swarming when visited the *haor* in winter season. This was the scenery of touching the heart.

SI.	Comon	Scientific	Family	Status	
No.	name	name	Failiny	Status	
1.	FulvousWh istling-duck	Dendrocygna bicolor	Deutscher	Winter	
2.	Gadwall	Anas strepera	Anatidae	Winter	
3.	Northern Pintail	Anas acuta	Anatidae	Winter	
4.	Gagany	Anas querquedula	Anatidae	Winter	
5.	Common Teal	Anas crecca	Anatidae	Winter	
6.	Red-crested Pochard	Netta rufina	Anatidae	Winter	
7.	Common Pochard	Aythya ferina	Anatidae	Winter	
8.	Ferruginous Duck	Aythya nyroca	Anatidae	Winter	
9.	Tufted Duck	Aythya fuligula	Anatidae	Winter	
10.	Little Cormorant	Phalacrocora x niger	Phalacrocoracidae	Resident	
11.	Pallas's Fish-eagle	Haliaeetus leucoryphus	Accipitridae	-	

Table 9. List of Migratory birds

3.4.2. Waterfowl Birds

A total number of 18 waterfowl species had been recorded under 13 families (Table 10). Migratory, resident and domestic waterfowls were identified in the wetland area. Usually for the women, duck rearing is a good practice in this area. The largest family Ardeidae having 5 species, Anatidae having 2 species, and Ciconiidae, Charadriidae, Motacillidae, Turnicidae, Pelecanidae, Accipitridae, Podicipedidae, Gaviidae, Pandionidae, represented only single species.

SI.	Comon	Scientific name	Family	Statu
No.	name	Berentine nume	T uning	S
1.	Greylag Goose	Anser anser	Anatidae	MVF
2.	Duck	Cairina scutulata	Anatidae	DC
3.	Kingfisher	Alcedo atthis	Alcedinidae	RF
4.	Great Egret	Egretta alba	Ardeidae	RC
5.	Cattle Egret	Ardeola ibis	Ardeidae	RC
6.	Grey Heron	Ardea cinerea	Ardeidae	RC
7.	Black Heron	Egretta ardesiaca	Ardeidae	RF
8.	Night Heron	Nycticorax nycticorax	Ardeidae	RT
9.	Stork	Ciconia boyciana	Ciconiidae	RF
10.	Plover	Pluvialis dominica	Charadriidae	ME
11.	Hemipode	Turnix sylvatica	Turnicidae	ME
12.	Water Pipet	Anthus spinoletta	Motacillidae	ME
13.	Crested Grebe	Podiceps cristatus	Podicipedidae	МО
14.	Diver	Gavial stellata	Gaviidae	MF
15.	White Pelican	Pelecanus onocrotdus	Pelecanidae	MT
16.	Brown fish Owl	Ketupa zeylonensis	Strigidae	RF
17.	Brahiminy Kite	Haliastur indus	Accipitridae	RVF
18.	Osprey	Pandion haliaetus	Pandionidae	MVF

Table 10. List of waterfowl birds

**M: Migratory, R: Resident, D: Domestic, T: Threatened, C: Common, O: Occasional, F: Few, VF: Very few, E: Extinct.

3.4.3. Bank Birds

Eight species under 7 families were recorded which revealed a high richness of the bank birds (Table 11). Sturnidae was the largest family with 2 species. Common Myna, Bulbul was the most common birds where other species were recorded as moderately common species. Dove and Woodpecker were on the verge of extinction.

Table 11. List of bank birds				
SI. No.	Common name	Scientific name	Family	Status
1.	Common Myna	Acridotheres tristis	Sturnidae	RVC
2.	Common Starling	Sturnus vulgaris	Sturnidae	МТ
3.	Bulbul	Pcynonotas jocosus	Peynonotidae	RVC
4.	Dove	Streptopelia decaocto	Columbidae	RF
5.	Sociable Lapwing	Vanellus gregarious	Charadriidae	RC
6.	Magpie Robin	Copsychus saularis	Turdine	RF
7.	Woodpecker	Chrysocolaptes lucidus	Picidae	RF
8.	Weaver	Ploceus benghalensis	Passeridae	RF

Table 11. List of bank birds

VC: Very Common, F: Few, M: Migratory, R: Resident

4. Conclusion

The wetland biodiversity of Bangladesh are being drastically by the impacts of the burgeoning human population. Wetlands are being continuously lost or degraded primarily because of various recent developments reflecting a lack of community awareness of wetland functions and values. Khan [12] reported that the rapid diminution of wetland biodiversity in relation to scarcity of water and pollution of water body, degradation and devastation of soil is essentially a crisis for the human spirit. The researcher identified the following causes of the depletion of wetlands biodiversity of *Dingaputa haor* are given here in.

References

- Minar, M.H., Hossain, M.B., and Shamsuddin, M., Climate Change and Coastal Zone of Bangladesh: Vulnerability, Resilience and Adaptability. Middle-East Journal of Scientific Research. 13 (1): 114-120. 2013a.
- [2] Khan, M.S., Haq, E., Huq, S., Rahman, A., Rashid, S.M.A., and Ahmed, H., Wetland of Bangladesh. Pp. 1-79. 1990.
- [3] Khan, M,A,R., Miah, M.I., Hossain, M.B., Begum, A., Minar, M.H., and Karim, R., Fish Biodiversity and Livelihood Status of Fishing Community of Tista River, Bangladesh. Global Veterinaria. 10 (4): 417-423. 2013.
- [4] UNDP (United Nation Development Program). Bangladesh Coastal and Wetland Biodiversity Management at Cox's Bazar and Hakaluki Haor, Government of the People's Republic of Bangladesh. 27(1): 10-17. 2004.
- [5] Kabir, K.M.R., Adhikary, R.K., Hossain, M.B., and Minar, M.H.. Livelihood Status of Fishermen of the Old Brahmaputra River,

Bangladesh. World Applied Sciences Journal, 16 (6): 869-873. 2012.

- [6] Rahman, A.K.A., Fresh water fisheries of Bangladesh. Bangladesh Zoological Society. Department of Fisheries, Dhaka, Bangladesh, pp.364. 1989.
- [7] Ali, M.O., Ahmed, M., Biodiversity conservation: Vision for Bangladesh. In: Bangladesh State of Environment Report 2000 of Environmental Journalists of Bangladesh (FEJB), Segun Bagichha, Dhaka, pp. 29-32. 2001.
- [8] World Bank., The Monitor Report of Environment 2001. The World Bank. 2001.
- [9] Minar, M.H., Shamsuddin, M., Bablu, M.G.U., Bhuyan, S.I., Induced spawning practices of different fishes in the hatcheries of

Barisal district, Bangladesh. Trends in Fisheries Research. 1(2): 14-17. 2012.

- [10] Islam MS Biodiversity of Jamuna Bridge of the surrounding area, M.S. thesis, Department of ENVS, BAU, Mymensingh, Bangladesh, pp: 9-15. 2006.
- [11] Safiullah S., Role of science in the sustainable development of the third world: Case point South Asia. In: Mallick, A.A. (eds.). The Jahangirnagar Review, Vol. VII(C), Faculty of Arts and Humanities, Jahangirnagar University, Savar, Dhaka, pp. 121-138. 1996.
- [12] Khan, E. 2001. Water and environment. In: Bangladesh: State of environment report 2000. Forum of Environmental Journalists of Bangladesh (FEJB), Segun Bagichha, Dhaka-1000. pp. 17-25.