Intraspecific Variation and Taxonomic Delimitation of Munronia pinnata (Meliaceae) in Sri Lanka

Dharmadasa R.M. ${ }^{1, *}$, Hettiarachchi P.L. ${ }^{\mathbf{2}}$, Premakumara G.A.S. ${ }^{1}$
${ }^{1}$ Herbal Technology Section, Industrial Technology Institute, Bauddhaloka Mawatha, Colombo 7, Sri Lanka
${ }^{2}$ Department of Biological Sciences, Faculty of Applied Sciences, Rajarata University of Sri Lanka, Mihintale,Sri Lanka
*Corresponding author: rathne66@yahoo.com

Received February 16, 2014; Revised February 25, 2014; Accepted March 02, 2014

Abstract

Munronia pinnata (Wall) The ob (Meliaceae) is a rare, therapeutically important medicinal plant used in traditional and folklore medicine in Sri Lanka. Available species/morphotypes/ecotypes of M. pinnata in different locations exhibit diverse range of variations suggesting the possible revision of current taxonomic status. Present study compares seventy different vegetative and reproductive morphological characters in order to suggest the possible taxonomic delimitation of 13 populations of M. pinnata available in Sri Lanka. A cluster analysis and a Principle Component analysis (PCA) were performed using average taxonomic distance. A single access (sequential), key to sub specific taxa was constructed using stable morphological characters. In the cluster, APRG - 5 populations (Population collected from Ritigala forest) has got separated from all the other populations at a distance of about 100%. Populations collected from the same geographical areas (Gampaha district GPPW - 3, GPWP - 3; Moneragala district MGMG - 9 MGWW - 7; Nuwara Eliya district NEKP - 3, NEMR - 3) have grouped closely either in the dendrogramme or in PCA or both. Based on the results, it could be concluded that population APRG - 5 is distantly related to all others and deserved placing as a sub specific taxon of M. pinnata. Further, populations collected from the same geographical area seem to be closely related with one another. Sequential key prepared using morphological characters could be used for the identification of M. pinnata populations even in the absence of flowers.

Keywords: cluster analysis, intraspecific variation, meliaceae, morphology, munronia pinnata
Cite This Article: Dharmadasa R.M., Hettiarachchi P.L., and Premakumara G.A.S., "Intraspecific Variation and Taxonomic Delimitation of Munronia pinnata (Meliaceae) in Sri Lanka." World Journal of Agricultural Research, vol. 2, no. 1 (2014): 26-36. doi: 10.12691/wjar-2-1-5.

1. Introduction

The Genus Munronia Wight. (Meliaceae), comprising 13-15 species, is naturally distributed in China, Sri Lanka, India, Indonesia, Malaysia Vietnam and the Philippines [1,2]. Munronia pinnata (Wall) The ob. is a rare medicinal plant species that occurs in Sri Lanka. Populations with an array of variable phenotypic characters (e.g. compound leaf with leaflet number varying from 3 to 11 , different types of leaf margins etc.) are available in various locations in Sri Lanka [3,4,5]. Moreover, earlier literature showed that M. pinnata was abundant and widely distributed in Sri Lanka in early days [1,2]. Further, all populations growing in Sri Lanka are treated as a single species due to inadequacy of available data for the recognition of infraspecific taxa [2]. It also suggests a correlation between geographical distribution and phenotypic variation in M. pinnata of Sri Lanka. Even though studies on the geographical distribution, comparative pharmacognostic studies of M. pinnata and Andrographis paniculata'[6], preliminary taxonomic status, and the genotypic variation of some populations using Randomly Amplified Polymorphic DNA) are
available [7,8], no detailed taxonomic study of M. pinnata populations has been carried out. Present study focused on a comprehensive morphological investigation of Sri Lankan populations of M. pinnata for elucidating the taxonomic status and developing an identification key.

2. Materials and Methods

2.1. Plant materials

After getting permission from the relevant authorities, same aged, seed propagated M. pinnata plants, were collected from different climatic zones (wet, intermediate and dry zones) of the country (Map 1; Plate $1 \&$ Table 1). These were identified by comparing them with authentic herbarium specimens deposited at National Herbarium. Voucher specimens (HTS1 - HTS13) for all populations were prepared and deposited in the institutional herbarium. As a measure to minimize the impact of environmental factors on the data collected, all plants were potted in the same mixture of potting medium (sand: topsoil: compost $=1: 1: 2$) and maintained in the green house under same controlled conditions for five years before taking samples. At least twenty individuals per population were used to record morphological data.

Plate 1. Different populations of Munronia pinnata used for the study. [Details of population codes are as given in Table 1. The last number of each code denotes the number of leaflets in the compound leaf of each population]

Table 1. The detailed locations of thirteen populations of Munronia pinnata used for the morphological study

Population code	Locality	District	Number of Leaflets	Altitude(M)	Agro- climatic zone	Rainfall(cm)
APRG-5	Ritigala	Anuradhapura	5	396	DL-3	$100-150$
BDHM-3	Haldummulla	Badulla	3	960	IU-1	$200-250$
GPPW-3	Pallewela	Gampaha	3	35	WL-1	$350-400$
GPWP-3	Warakapola	Gampaha	3	125	WL-1	$350-400$
KGKP-5	Kuliyapitiya	Kurunegala	5	30	DL-1	$150-200$
MGMD-3	Madulla	Monaragala	3	196	IL-1	$250-300$
MGMG-9	Srivijayapura	Monaragala	9	220	IL-1	$250-300$
MGNG-3	Nilgala	Monaragala	3	283	IL2	$250-300$
MGWW-7	Wellawaya	Monaragala	7	192	IL-1	$150-200$
MTMM-5	Meemure	Matale	5	420	WM-2	$200-250$
MTNU-5	Naula	Matale	5	375	WM-2	$200-250$
NEKP-3	Kithulpe	Nuwaraeliya	3	720	WU	$300-350$
NEMR--3	Mathurata	Nuwaraeliya	3	1050	WU	$300-350$

DL- Low country dry zone; IU- Up country intermediate zone; WL- Low country wet zone; IL- Low country intermediate zone; WM-Mid country wet zone; WU-Up country wet zone

Map 1. Geographical distribution of Munronia pinnata in Sri Lanka [Details of population codes are as given in Table 1. The last number of each code denotes the number of leaflets in the compound leaf of each population]

2.2. Selecting and Recording Morphological Characters

Seventy different vegetative and reproductive features, including the characters, which have not been previously recorded, were assessed by using either fresh material or material preserved in 70% ethanol. The protocols for clearing, staining and mounting of the materials were adopted from literature with slight modifications whenever necessary $[9,10,11]$. Characters were then coded into discrete states as either binary state variables or those with extended variation as multistate variables (Annexure 1 \& Annexure 2) as described by previous studies [12,13]. Photographs of study material were taken using digital microscope (Olympus, Model CX 31, Japan).

2.3. Cluster Analysis

The variation range of each character of the plant was divided into two or more character states and ranked them by giving a numerical value for each character state. When interpopulational variation was absent for a given character, data of all individuals of that population were considered as a single value for the data matrix. UPGMA cluster analysis and ordination (correspondence analysis) of the basic data matrix was performed with NTSYS 1.8 [14].

2.4. Construction of Taxonomic Keys to Identify Munronia pinnata Populations

A single access (sequential), indented (Yoked) key was constructed using stable morphological characters
recorded to identify different populations of M. pinnata collected from different localities.

3. Results and Discussion

3.1. Morphological Variation

Present study identified 25 monomorphic characters of which six were vegetative characters and the rest was reproductive characters, as common features to all populations collected from the three major climatic zones in Sri Lanka. This is acceptable as all these are currently classified under a single species [2]. However, with respect to the rest of the characters, a large interpopulational variation (about 66% of the characters) was observed among the populations studied supporting the idea of the existence of clearly defined taxa below species level.

As all plants used for the study were acclimatized for at least five years under same soil and climatic conditions, the morphological characters recorded could be considered as a true reflection of genetically determined morphology of the plants concerned. An intra specific monomorphism in some common floral characters was evident in this study supporting the existing classification, which considers all morphotypes as a single species. In contrast, a considerable level of polymorphism was also found in some vegetative characters and in fine floral characters such as stamina tube length, stigma shape and style length. Some of these seem very promising in differentiating populations.

All characters used in the key are vegetative and therefore, could be used even in the non-flowering season of the plant. Since flowering is very rare in certain populations [3], it is essential to prepare a key based on vegetative characters. Moreover, these plants were maintained under the same environmental conditions for 5 years and hence, can be considered as very stable and highly reliable taxonomic features of the plant.

The principle component analysis shows that 3leaflet bearing types (except GPPW - 3 \&GPWP - 3) are well separated from rest of the populations at a distance of $80-85 \%$ in the $3^{\text {rd }}$ cluster (Figure $1 \&$ Figure 2). Interestingly, there is a close genetic relatedness among the populations collected from the same geographical area [(MGMD -3 and MGNG - 3 from intermediate zone (IL); GPPW - 3 \& GPWP - 3 from low country wet zone (WL); NEKP - 3, NEMR - 3 from up country wet zone (WU)]. The presence of phenotypic variation, which could be correlated with the geographical distribution, was suggested by previous studies and results of the present study have proved it [2].

As shown in Figure 1 \& Figure 2, the population collected from Ritigala area (APRG - 5) has got well separated from other populations at a distance of 95% in the cluster and along the first axis at one extreme end (left side) in principle component analysis. This is acceptable as it bears several unique characters such as undulate distal leaf margin, crenate proximal leaf margin, wide leaves, droopy plants, exceptionally high vein islet number, veinlet termination number, low number of flowers per inflorescence, a globose shape
style base and a very low number of seeds per fruit. The microclimate surrounding Ritigala reserve forest is very much different from that in other locations. This might have favored the growth and survival of APRG - 5 population. These Geographically isolated populations tend to become genetically specific due to the absence of mixing of genes with other populations. The phenetic distance observed between APRG - 5 population and other populations in the dendrogramme support the idea that this population has diverged in another direction. In the process of evolution, because of isolation and adaptation, vegetative parts of organism change prior to reproductive parts. Therefore, observations of this study are in accordance with the natural process of speciation and evolution and strengthen the idea of placing APRG - 5 population in a separate sub specific taxon of M. pinnata. A broader comparison with respect to characters of other disciplines such as micromolecules, proteins and DNA might help to decide the exact position or taxonomic status (whether it has to be a different variety or sub species). Presence of phenotypic variation, which could be correlated with the geographical distribution, was suggested in the Flora of Ceylon and results of this research have proved it. Further, the observed separation of the 3 - leaflet group was similar to the findings reported by previous workers who analyzed eight morphological characters together with some DNA evidence in five populations of M. pinnata [7].

Populations collected from Gampaha district (GPPW - 3, GPWP - 3) and Moneragala district (MGMD - 3, MGNG - 3) have grouped closely in dendrogramme. Clustering of populations GPPW - 3, GPWP - 3 is acceptable as these populations bear many similar morphological features such as the habit of the plant (medium sized plants), smooth shiny texture of the leaves, terminal leaflet length, shape of the terminal leaflet base (acute), leaf margin (entire), and proximal leaflet margin (undulate). It shows that, populations collected from the same area have some kind of genetic relationship, which might not be noticeable at once
when we consider the morphological traits in these populations.

Populations bearing more than three leaflets except NEKP-3 got separated from others at a distance of about 75% (Cluster 3b). In the cluster, NEKP - 3 has got separated from other populations at a distance of about 80%. Since all 3- leaflet types were clustered together, in both dendrogramme and Principle component analysis, it clearly indicates a close genetic relatedness among 3 - leaflet bearing populations (Figure 1 \& Figure 2).

3.2. Sequential Indented Key Based on Vegetative Morphology

Leads of each couplet of sequential indented key prepared give reliable characters, which could be used to differentiate very closely resembling populations of M. pinnata.

All characters used in the key are vegetative and therefore, could be used even in the non-flowering season of the plant. Since flowering is very rare in certain populations [3], it is essential to prepare a key based on vegetative characters. Moreover, these plants were maintained under the same environmental conditions for 5 years and hence, can be considered as very stable and highly reliable taxonomic features of the plant.

The principle component analysis shows that 3 leaflet bearing types (except GPPW - 3 \&GPWP - 3) are well separated from rest of the populations at a distance of $80-85 \%$ in the third cluster (Figure $1 \&$ Figure 2). Interestingly, there is a close genetic relatedness among the populations collected from the same geographical area [(MGMD - 3 and MGNG - 3 from intermediate zone (IL); GPPW - 3 \& GPWP - 3 from low country wet zone (WL); NEKP - 3, NEMR - 3 from up country wet zone (WU)]. The presence of phenotypic variation, which could be correlated with the geographical distribution, was suggested by previous studies and results of the present study have proved it [2].

Figure 1. Dendrogramme generated by combining 45 polymorphic vegetative and reproductive characters of 13 populations of Munronia pinnata

Figure 2. Principle Component analysis on basis of 45 polymorphic vegetative and reproductive characters of 13 populations of Munronia pinnata

3.3. Sequential Indented Key Prepared to Identify Different Populations of Munronia pinnata

1. Number of leaflets three ...GPWP-3, NEMR-3,

NEKP-3, MGNG-3, BDHM-3, MGMD-3, GPPW-3
2. End leaf margin entire...EMR-3, NEKP-3,

BDHM-3, GPWP-3
3. Side leaflet base oblique ...NEMR-3
3. Side leaflet base not oblique...NEKP-3,

GPWP-3, BDHM-3
4. End leaflet veins $14 \ldots$ BDHM-3
4. End leaflet veins less than $14 \ldots$

NEKP-3, GPWP-3
5. Side leaflet margin undulate..... GPWP-3
5. Side leaflet margin not undulate NEKP-3
2. End leaflet margin not entire...MGMD-3,

MGNG-3, GPPW-3
6. End leaflet veins less than $10 \ldots$ MGNG-3
6. End leaflet veins more than $10 \ldots$

MGMD-3, GPPW-3
7. Side leaflet primary-secondary vein
angle at base $45-60^{\circ} \ldots \ldots \ldots$. GPPW-3
7. Side leaflet primary-secondary vein
angle less than 45-60 \ldots. MGMD-3

1. Number of leaflets more than three......APRG-5,

MTMM-5, MTNU-5, MGMG-9, MGWW-7, KGKP-5 8. Secondary - tertiary vein angle less than $60^{\circ} \ldots$ MTMM-5
8. Secondary-tertiary vein angle not less than $60^{\circ} \ldots$ APRG-5, MTNU-5, MGMG-9,

MGWW-7, KGKP-5
9. End leaflet veins less than 10 ..MTNU-5 9. End leaflet veins more than 10 APRG-5, MGMG-9, MGWW-7, KGKP-5
10. End leaf margin not dentate....

APRG-5

10. End leaf margin dentate ...MGMG-9,

MGWW-7, KGKP-5
11. Side leaflet apex acute- MGMG-9
11. Side leaflet apex not acute ...

MGWW-7, KGKP-5
12. Side leaflet base
roundedMGWW-7
12. Side leaflet base not
rounded KGKP-5

4. Conclusions

Population collected from Ritigala forest (APRG-5) is distantly related to all others and deserved placing as a sub specific taxon of M. pinnata. Further, populations collected from the same geographical area (Gampaha and Moneragala districts) seem to be closely related with one another M. pinnata populations could be identified even in the absence of flowers using the key constructed in the study.

Acknowledgement

Financial support given by institutional grants is greatly appreciated.

References

[1] Hooker, J.D. 1872. Flora British India Vol. 2.Published under authority of the secretary for India for state council. Savills Edwards and co, Printers, Chandos street, covert garden London. 542-543.
[2] Mabberley, 1995. Meliaceae. In: Dassanayake MD, Forsberg F.R. and Clayton WD. eds. A Revised Handbook to the Flora of Ceylon. Vol ix. Amerind Pub. Co. Ltd. New Delhi 230-239.
[3] Dharmadasa, R.M., Hettiarachchi, P.L. and Premakumara, G.A.S. 2011. Geographical distribution and conservation of a rare medicinal Plant Munronia pinnata (Wall.) Theob.(Meliaceae) in Sri Lanka. Bangladesh J. Plant. Taxon. 18 (1): 39-49.
[4] Dassanayake, M.D, Balasubramanium, S. 1995. A preliminary study of secondary metabolites in selected families. Proc. 51st Annual Session, Sri Lanka Association for the Advancement of Science, Sri Lanka, 127.
[5] Jayaweera B.M.A. 1981. Medicinal plants (indigenous and exotic) used in Ceylon- part (iv). Natn. Sci. Coun. Sri Lanka. 59
[6] Dharmadasa, R.M. Samarasinghe K, Adhihetty P, and Hettiarachchi P.L. (2013) Comparative Pharmacognostic Evaluation of Munronia Pinnata (Wall.) Theob. (Meliaceae) and Its Substitute Andrographis paniculata (Burm.f.) Wall. Ex Nees (Acanthaceae). World Journal of Agricultural Research 1, No. 5: 77-81.
[7] Ruckshanthi, J.P.D, Pushpakumara, D.K.N.G, Perera, A.L.T, Muhunthan, R. 2002. Morphological and genetic (RAPDs) characterization of M. pinnata (Meliaceae). Tropical Agricultural Research 14: 11-21.
[8] Hettiarachchi, P.L, Dharmadasa, R.M, Premakumara, G.A.S, Perera, A.M.M.S. and Hettiarachchi, S. 2007. A Preliminary study of taxonomic status of Munronia pinnata (Wall) Theob. (Meliaceae) in proceeding, 27th Annual Session of Iinstitute of Biology, Sri Lanka. 36.
[9] Johansen D.A. 1940. Plant micro techniques McGraw-Hill book company, New York, pp 49-95.
[10] Radford A.E, Dickson W. C, Massey J.R and Bell C.R. 1974. Vascular Plant Systematic. Harper and Row Publishers. New York 891.
[11] Herath T. 1979. Teaching materials for angiosperm taxonomy and micro techniques. Department of botany, University of Colombo, Sri Lanka.
[12] Dilcher D.L. 1974. Approaches to the identification of angiosperm leaf remains. The botanical Review. Department of Plant Sciences, Indiana University, Bloomington, Indiana 40: 184.
[13] Yakandawala D.M.D. 2001. Teaching material for Plant Taxonomy I - Basic Terminology. Department of Botany, University of Peradeniya.
[14] Rolfh FJ. 1993 NTSYS - pc - Numerical Taxonomy and Multivariate Analysis System Version 1.80. Applied Biostatistics Inc.

Annexures

Annexure 1

Table 2. List of morphological characters together with their character states recorded in Munronia pinnata

Character	Character state
A. Vegetative characters	
Plant habit	Droopy (1), Erect (2), Intermediate (3)
Nature of the plant	Robust (1), Medium (2), Small (3)
Plant height (cm)	$\begin{gathered} <10(1), 10-14(2), 15-19(3),>20 \\ \text { (4) } \end{gathered}$
No. of leaflets	3 (1), 5 (2), 7 (3), 9-11 (4)
Stem trichomes	Present (1)
Stem trichome type	Glandular (1), simple unicellular (2), bifurcate (3)
Phyllotaxy	Whorled (1)
Leaf venation	Pinnately reticulate (1)
Leaf texture	Velvet (1), Smooth shiny (2), Rough (3)
Leaf type	Imparipinnate (1)
Petiole length (cm)	<4 (1), 4-6 (2), >6 (3)
Leaf length (cm)	<10 (1), 10-15 (2), > 15 (3)
Leaf width (cm)	<5 (1), 5-7 (2), >7 (3)
Leaf L/W ratio	1-2 (1), 2.1-3 (2), >3 (3)
Terminal leaflet length (cm)	<6 (1), 6-8 (2), >8 (3)
Terminal leaflet width (cm)	<3 (1), >3 (2)
Terminal leaflet L/W ratio	1-2 (1), 2.1-3 (2), >3 (3)
Terminal leaflet apex	Acute (1), Obtuse (2)
Terminal leaflet base	Rounded (1), Oblique (2)
Terminal leaflet margin	Entire (1), Dentate end leaf lobed (2),Undulate (3)
Number of veins in terminal leaflet	<10 (1), 10-12 (2), >12 (3)
Proximal leaflet length (cm)	3-4 (1), 4.1-5.1 (2)
Proximal leaflet width (cm)	<2 (1), 2 (2), >2 (3)
Proximal leaflet L/W ratio	1-2 (1), >2 (2)
Proximal leaflet apex	Acute (1), Obtuse (2)
Proximal leaflet base	Rounded (1), Oblique (2)
Proximal leaflet margin	Entire (1), Dentate (2), Undulate (3) crenate (4)
Proximal leaflet petiole	Prominent (1), Not prominent (2)
Number of veins in proximal leaflet	<8 (1), 8 (2), >8 (3)
Stipules	Absent (1)
Leaf trichomes	Present (1)
P. vein to secondary vein angle (base)	<450, (1), 45-600 (2)
P. vein to secondary vein angle (apex)	<450, (1), 45-600 (2)
S. vein to tertiary vein angle	45-600 (1), 600-900 (2), >900 (3)
Areole type	Polygonal (1)
Vein islet No.	$\begin{gathered} \hline 0.5-1(1), 1.1-1.5(2), 1.6-2(3), 2.1- \\ 2.5(4), 2.5<(5) \\ \hline \end{gathered}$
Vein termination No.	$<3.5(1), 3.6-.5$ (2), >5 (3)
B. Reproductive characters	
Number of flowers/inflorescence	<4 (1), 4 (2), >4 (3)
Corolla type	Salver form (1)
Flower color	white (1)
Flower symmetry	Actinomorphic (1)
Corolla length (cm)	<2.5 (1), 2.5-3 (2)
Pedicel	Present (1)
Number of sepals	5 (1)
Sepal trichome upper surface	Present (1)
Sepal trichome lower surface	Present (1)
Sepal length (mm)	<6 (1), >6 (2)
Sepal width (mm)	<1.5 (1), >1.5 (2)
Number of petals	5 (1)
Petal length (cm)	<1.5, (1) 1.5-2 (2), >2 (3)
Sepal L/W ratio	2-4.9 (1), 5-7 (2)
Petal width (cm)	<0.5, (1) 0.5-0.7 (2), >0.7(3)
Petal L/W ratio	1.5-2.5 (1), 2.6-3.5 (2), 3.5< (3)
Flower length	2.5-3 (1), 3.1-3.5 (2), 3.6< (3)
Petal apex	Acute (1), Truncate (2), Rounded

	(3)
Petal venation	Pinnatly reticulate (1)
Petal upper surface trichomes	Absent (1)
Petal lower surface trichomes	Dense (1)
Petal margin trichomes	Present (1), Absent (2)
Androceum type	Monodelphous (1)
Staminal tube length (cm)	$2>(1), 2-2.5(2),>2.5$
Anther filament attachment	Dorsifixed (1)
Anther collar attachment	Double cordate (1)
Style length (cm)	$: 2-2.5(1), 2.6-3(2)$
Anther apex	Mucronate (1)
Stigma shape	Globose (1)
Style length (cm)	$<2.5(1),>2.5(2)$
Stigma hairs	Absent (1)
Ovary	Superior (1), Inferior (2)
Number of carpels	$5(1)$
Placentation	Axilliary (1)
Fruit type	Capsule (1)
Number of seeds per fruit	$<7(1), 7-9(2),>9(3)$
Seed colour	Brown (1)
Seed length (mm)	$<4(1),>4(2)$
Seed width (mm)	$<2(1),>2(2)$
Seed L/W ratio	$1-2(1),>2(2)$

Table 3. List of morphological characters together with their character states recorded in Munronia pinnata

A. Vegetative characters	
Charter	Droopy (1), Erect (2), Intermediate
(3)	

B. Reproductive characters	
Number of flowers/inflorescence	$<4(1), 4(2),>4(3)$
Corolla type	Salver form (1)
Flower color	white (1)
Flower symmetry	Actinomorphic (1)
Corolla length (cm)	$<2.5(1), 2.5-3(2)$
Pedicel	Present (1)
Number of sepals	$5(1)$
Sepal trichome upper surface	Present (1)
Sepal trichome lower surface	Present (1)
Sepal length (mm)	$<6(1),>6(2)$
Sepal width (mm)	$<1.5(1),>1.5(2)$
Number of petals	$5(1)$
Petal length (cm)	$<1.5,(1) 1.5-2(2),>2$ (3)
Sepal L/W ratio	$2-4.9(1), 5-7(2)$
Petal width (cm)	$<0.5,(1) 0.5-0.7(2),>0.7(3)$
Petal L/W ratio	$1.5-2.5(1), 2.6-3.5(2), 3.5<(3)$
Flower length	$2.5-3(1), 3.1-3.5(2), 3.6<(3)$
Petal apex	Acute (1), Truncate (2), Rounded
Petal venation	Pinnatly reticulate (1)

Petal upper surface trichomes	Absent (1)
Petal lower surface trichomes	Dense (1)
Petal margin trichomes	Present (1), Absent (2)
Androceum type	Monodelphous (1)
Staminal tube length (cm)	$2>(1), 2-2.5(2),>2.5$
Anther filament attachment	Dorsifixed (1)
Anther collar attachment	Double cordate (1)
Style length (cm)	$: 2-2.5(1), 2.6-3(2)$
Anther apex	Mucronate (1)
Stigma shape	Globose (1)
Style length (cm)	$<2.5(1),>2.5(2)$
Stigma hairs	Absent (1)
Ovary	Superior (1), Inferior (2)
Number of carpels	$5(1)$
Placentation	Axilliary (1)
Fruit type	Capsule (1)
Number of seeds per fruit	$<7(1), 7-9(2),>9(3)$
Seed colour	Brown (1)
Seed length (mm)	$<4(1),>4(2)$
Seed width (mm)	$<2(1),>2(2)$
Seed L/W ratio	$1-2(1),>2(2)$

Table 4. Morphological character table of 13 populations of Munronia pinnata

Character	POPULATION												
$\begin{gathered} \text { Vegetativ } \\ \mathrm{e} \\ \text { characters } \\ \hline \end{gathered}$	$\begin{gathered} \text { APRG- } \\ 5 \end{gathered}$	$\begin{gathered} \text { BDHM } \\ -3 \end{gathered}$	$\begin{gathered} \text { GPPW } \\ -3 \end{gathered}$	$\begin{gathered} \text { GPWP } \\ -3 \end{gathered}$	$\begin{gathered} \text { KGKP } \\ -5 \end{gathered}$	$\begin{gathered} \text { MGM } \\ \text { D-3 } \end{gathered}$	$\begin{gathered} \text { MGM } \\ \text { G-9 } \end{gathered}$	$\begin{gathered} \text { MGN } \\ \text { G-3 } \end{gathered}$	$\begin{gathered} \text { MGW } \\ \text { W-7 } \end{gathered}$	$\begin{gathered} \text { MTM } \\ \text { M-5 } \end{gathered}$	$\begin{gathered} \text { MTNU } \\ -5 \end{gathered}$	$\begin{gathered} \text { NEKP- } \\ 3 \end{gathered}$	$\begin{gathered} \text { NEMR } \\ -3 \end{gathered}$
1. Plant habit	D	IM	IM	IM	E	IM	IM	IM	IM	E	E	IM	E
2. Nature of the plant	Robust	$\begin{gathered} \text { Mediu } \\ \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Mediu } \\ \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Mediu } \\ \mathrm{m} \end{gathered}$	Mediu m	Mediu	Mediu m	Small	Robust	Robust	Mediu	Mediu m	Small
3. Plant height (cm)	17	10.3	12.5	13.5	8.8	13.5	6.5	15	13	9	10.7	25	7.5
4.Number of leaflets	5	3	3	3	5	3	9/11	3	7	5/7	5	3	3
5. Stem trichome*	Present												
$\begin{gathered} \hline 6 . \\ \text { Phyllotax } \\ y^{*} \\ \hline \end{gathered}$	Whorle d	Whorle d	Whorle d	Whorle d									
7. Leaf venation*	PR												
8. Leaf texture	Velvet	Velvet	Smoot h shiny	Smoot h shiny	Rough	Smoot h shiny	Rough	Rough	Rough	Smoot h shiny	Rough	Velvet	Velvet
9. Leaf type*	IP												
10. Petiole length (cm)	3.5	7.5	6	5.5	5	6	2	4.5	4	8	3.5	3.5	2.5
11. Leaf length (cm)	12	18	15	14	7	18	17.5	9.5	12	15	9	10	7.5
12. Leaf width (cm)	9	4.5	5	5	8	5	8	4	3	4.5	7	8	4.5
13 Leaf L/W ratio	1.3	4	3	2.8	1.1	3.6	2.2	2.3	4	3.3	1.2	1.25	1.6
14.Termin al leaflet length (cm)	4.5	8	7	7.5	4.5	9	7	4	4.5	7	5.5	6	4
15. T.leaf width (cm)	2	2.5	2.5	2.5	2.5	3.5	3.2	2.5	3	2.5	2	2.5	2
$\begin{gathered} 16 \mathrm{~T} . \\ \text { leaf. } \mathrm{L} \\ \text { /W ratio } \end{gathered}$	2.2	3.2	2.8	3	1.8	2.5	2.2	1.6	1.5	2.8	2.7	2.4	2
17. Terminal leaf apex	Obtuse	Acute	Acute	Acute	Obtuse	Obtuse	Obtuse	Obtuse	Obtuse	Acute	Acute	Acute	Obtuse
18. T. leaflet base*	$\begin{aligned} & \text { Round } \\ & \text { ed } \end{aligned}$	$\begin{aligned} & \text { Round } \\ & \text { ed } \end{aligned}$	$\begin{aligned} & \text { Round } \\ & \text { ed } \end{aligned}$	$\begin{aligned} & \text { Round } \\ & \text { ed } \end{aligned}$	$\begin{aligned} & \text { Round } \\ & \text { ed } \end{aligned}$	$\begin{aligned} & \text { Round } \\ & \text { ed } \end{aligned}$	$\begin{aligned} & \text { Round } \\ & \text { ed } \end{aligned}$	$\begin{aligned} & \text { Round } \\ & \text { ed } \end{aligned}$	Round ed	$\begin{aligned} & \text { Round } \\ & \text { ed } \end{aligned}$	$\begin{aligned} & \text { Round } \\ & \text { ed } \end{aligned}$	$\begin{aligned} & \text { Round } \\ & \text { ed } \end{aligned}$	$\begin{aligned} & \text { Round } \\ & \text { ed } \end{aligned}$

19.Termin al leaflet margin	Undula te	Entire	Entire end leaf lobed	Entire	Dentat e end leaf lobed	Dentat e end leaf lobed	Dentat e end leaf lobed	Dentat e end leaf lobed	Dentat e end leaf lobed	Entire	Dentat e end leaf lobed	Dentat e end leaf lobed	Entire
20.Numbe r of veins in Terminal leaflet	14	14	14	12	10	11	10	8	10	10	10	10	12
21. Proximal leaflet length (cm)	3	5	3	3	3	3	3	3	3	3	3	3	3
CHARAC TER	$\begin{gathered} \text { APRG- } \\ 5 \end{gathered}$	$\begin{gathered} \text { BDHM } \\ -3 \end{gathered}$	$\begin{gathered} \text { GPPW } \\ -3 \end{gathered}$	$\begin{gathered} \hline \text { GPWP } \\ -3 \end{gathered}$	$\begin{gathered} \text { KGKP } \\ -5 \end{gathered}$	$\begin{gathered} \hline \text { MGM } \\ \text { D-3 } \end{gathered}$	$\begin{gathered} \hline \text { MGM } \\ \text { G-9 } \end{gathered}$	$\begin{gathered} \hline \text { MGN } \\ \text { G-3 } \end{gathered}$	$\begin{gathered} \text { MGW } \\ \text { W-7 } \end{gathered}$	$\begin{gathered} \text { MTM } \\ \text { M-5 } \end{gathered}$	$\begin{gathered} \hline \text { MTNU } \\ -5 \end{gathered}$	$\begin{gathered} \text { NEKP- } \\ 3 \end{gathered}$	$\begin{gathered} \hline \text { NEMR } \\ -3 \\ \hline \end{gathered}$
22. Proximal leaflet width (cm)	1.5	3	1.5	1	1.2	2	1.5	1.5	2	1.5	1.7	1.2	2.5
23 P. leaf L/W ratio	2	1.6	2	3	2.5	1.5	2	2	1.5	2	1.7	2.5	1.2
24 Proximal leaflet apex	Obtuse	Acute	Acute	Acute	Obtuse	Acute	Acute	Obtuse	Obtuse	Acute	Acute	Obtuse	Acute
25. Proximal leaflet base	Obliqu e	Round ed	Round ed	$\begin{aligned} & \text { Round } \\ & \text { ed } \end{aligned}$	Obliqu e	$\begin{aligned} & \text { Round } \\ & \text { ed } \end{aligned}$	Obliqu e	$\begin{aligned} & \text { Round } \\ & \text { ed } \end{aligned}$	Round ed	Obliqu e	Obliqu e	Obliqu e	Obliqu e
Proximal leaflet margin	Crenat e	Entire	Undula te	Undula te	$\begin{gathered} \text { Dentat } \\ \mathrm{e} \end{gathered}$	$\begin{gathered} \text { Dentat } \\ \text { e } \end{gathered}$	$\begin{gathered} \text { Dentat } \\ \text { e } \end{gathered}$	$\begin{gathered} \text { Dentat } \\ \text { e } \end{gathered}$	$\begin{gathered} \text { Dentat } \\ \text { e } \end{gathered}$	Undula te	$\begin{gathered} \text { Dentat } \\ \mathrm{e} \end{gathered}$	$\begin{gathered} \text { Dentat } \\ \text { e } \end{gathered}$	Entire
27. Proximal leaflet petiolule	NP	P	P	P	P	NP	NP	NP	NP	P	NP	P	P
28 No. veins in proximal leaflet	8	10	6	6	8	8	8	8	8	10	8	8	8
29. Stipules*	Absent												
30. Leaf trichomes *	Present												
$\begin{aligned} & \hline \text { 31. P-S } \\ & \text { angle(a) } \end{aligned}$	45-60	45-60	45-60	45-60	45-60	45-60	< 45	45-60	45-60	45-60	45-60	45-60	45-60
$\begin{aligned} & \text { 32. P-S } \\ & \text { angle (b) } \end{aligned}$	<45	< 45	45-60	45-60	45-60	< 45	< 45	< 45	45-60	<45	< 45	45-60	<45
$\begin{gathered} \text { 33. S-T } \\ \text { angle } \\ \hline \end{gathered}$	60-90	60-90	60-90	60-90	60-90	60-90	60-90	90	60-90	45-60	60-90	60-90	60-90
Reproduct ive characters													
34. No. of flowers in infloresce nt	4	2	2	2	2	3	2	3	2	3	2	6	2
	S	S	S	S	S	S	S	S	S	S	S	S	S
36. Flower colour*	White												
37. Flower symmetry *	AM												
$\begin{aligned} & \text { 38.Coroll } \\ & \text { a length } \\ & (\mathrm{cm}) \end{aligned}$	2.4	2.8	3	2.2	2.5	2	3.0	2	2.6	3	3	2.5	2.5
$\begin{gathered} \text { 39.Pedicel } \\ * \end{gathered}$	Present												
	APRG-	BDHM	GPPW	GPWP	KGKP	MGM	MGM	MGN	MGW	MTM	MTNU	NEKP-	NEMR

	5	-3	-3	-3	-5	D-3	G-9	G-3	W-7	M-5	-5	3	-3
Reproduct ive characters													
40. No. of sepals*	5	5	5	5	5	5	5	5	5	5	5	5	5
41. Sepal trichome (u)*	Present												
$\begin{aligned} & \text { 42.Sepal } \\ & \text { length(m } \\ & \mathrm{m}) \end{aligned}$	5	7	7	7	5	5	6	4	5	7	6	5	3
$\begin{aligned} & \text { 43. Sepal } \\ & \text { width } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	1	1	1	1	1	1	2	1.5	1	1	1	1	1
44 . Sepal L/W ratio	5	7	7	7	5	5	3	2.2	5	7	6	5	3
45. Sepal trichomes $(\mathrm{l})^{*}$	Present												
46. No. of petal*	5	5	5	5	5	5	5	5	5	5	5	5	5
$\begin{gathered} \text { 47. Petal } \\ \text { length(cm } \\) \end{gathered}$	1.5	2	1.7	2	2.1	1.5	2	1.3	2.2	2	2.1	1.8	1.2
$\begin{gathered} \text { 48. Petal } \\ \text { width }(\mathrm{cm}) \end{gathered}$	0.4	0.7	0.7	1	0.6	0.5	0.5	0.4	1	0.9	0.7	1.0	0.4
49 Petal L/W ratio	3.75	2.85	2.42	2	3.5	3	4	3.25	2.2	2.2	3	1.8	3
50. Flower length (cm)	3.2	4.5	3	2.9	2.6	2.8	3.5	3	2.8	3.2	4.3	3	2.5
$\begin{gathered} \text { 51.Petal } \\ \text { apex } \\ \hline \end{gathered}$	Acute	Acute	Acute	Acute	$\begin{gathered} \text { Round } \\ \text { ed } \end{gathered}$	Acute	Acute	$\begin{gathered} \hline \text { Trunca } \\ \text { te } \end{gathered}$	$\begin{gathered} \text { Round } \\ \text { ed } \\ \hline \end{gathered}$	Acute	Acute	Acute	Acute
```52.Petal margin trichomes (u).*```	Present												
53. Petal trichomes (1)*	Dense												
54. Petal tri (u)	Absent												
55.Petal venation*	PR												
	$\begin{gathered} \text { APRG- } \\ 5 \end{gathered}$	$\begin{gathered} \text { BDHM } \\ -3 \end{gathered}$	$\begin{gathered} \text { GPPW } \\ -3 \end{gathered}$	$\begin{gathered} \text { GPWP } \\ -3 \end{gathered}$	$\begin{gathered} \text { KGKP } \\ -5 \end{gathered}$	$\begin{gathered} \text { MGM } \\ \text { D-3 } \end{gathered}$	$\begin{gathered} \text { MGM } \\ \text { G-9 } \end{gathered}$	$\begin{gathered} \text { MGN } \\ \text { G-3 } \end{gathered}$	$\begin{gathered} \text { MGW } \\ \text { W-7 } \end{gathered}$	$\begin{gathered} \text { MTM } \\ \text { M-5 } \end{gathered}$	$\begin{gathered} \text { MTNU } \\ -5 \end{gathered}$	$\begin{gathered} \text { NEKP- } \\ 3 \end{gathered}$	$\begin{gathered} \text { NEMR } \\ -3 \end{gathered}$
56   Androceiu   m type   $57.5 \frac{1}{}$	MD												
57.Stamin a tube*	Present												
58.Stamin al tube L (cm)	2.3	2.5	2.3 change this	2.5	2.4	2	2.7	2	2.5	2.9	2.5	2.0	2.0
59. Anther fil. Attachme nt*	DF												
60.Anther collar attachmen t *	DC												
61.Style length	2.4	2.6	2	2.1	2.5	2.2	2	2	2.9	3	2.9	3	2
62Anther apex	Mucro nate	Mucro nate	Mucro nate	Mucro nate	$\begin{gathered} \text { Mucro } \\ \text { nate } \\ \hline \end{gathered}$	Mucro nate	Mucro nate	Mucro nate	$\begin{gathered} \text { Mucro } \\ \text { nate } \\ \hline \end{gathered}$	Mucro nate	Mucro nate	$\begin{gathered} \text { Mucro } \\ \text { nate } \end{gathered}$	Mucro nate
63.Stigma shape*	Globos   e	Globos e	Globos   e	Globos   e	Globos   e	Globos   e	Globos e						
64.Style base	Globos e	Flat											
65. Stigma hairs*	Present												


66. Ovary*	Superi or	$\begin{aligned} & \text { Superi } \\ & \text { or } \end{aligned}$	Superi or										
67. No. of Carpels*	5	5	5	5	5	5	5	5	5	5	5	5	5
$\begin{gathered} 68 . \\ \text { Placentati } \\ \text { on* } \end{gathered}$	Axillar   y												
	$\begin{gathered} \text { APRG- } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { BDHM } \\ -3 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { GPPW } \\ -3 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { GPWP } \\ -3 \\ \hline \end{gathered}$	$\begin{gathered} \text { KGKP } \\ -5 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MGM } \\ \text { D-3 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MGM } \\ \text { G-9 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MGN } \\ \text { G-3 } \end{gathered}$	$\begin{gathered} \hline \text { MGW } \\ \text { W-7 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MTM } \\ \text { M-5 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MTNU } \\ -5 \\ \hline \end{gathered}$	$\begin{gathered} \text { NEKP- } \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \text { NEMR } \\ -3 \\ \hline \end{gathered}$
69. Fruit type*	$\begin{gathered} \text { Capsul } \\ \mathrm{e} \end{gathered}$	$\begin{gathered} \text { Capsul } \\ \text { e } \end{gathered}$	$\begin{gathered} \text { Capsul } \\ \mathrm{e} \end{gathered}$	$\begin{gathered} \text { Capsul } \\ \mathrm{e} \end{gathered}$	$\begin{gathered} \text { Capsul } \\ \mathrm{e} \end{gathered}$	$\begin{gathered} \text { Capsul } \\ \text { e } \end{gathered}$	$\begin{gathered} \text { Capsul } \\ \mathrm{e} \end{gathered}$	$\begin{gathered} \text { Capsul } \\ \text { e } \end{gathered}$	$\begin{gathered} \text { Capsul } \\ \mathrm{e} \end{gathered}$	$\begin{gathered} \text { Capsul } \\ \mathrm{e} \end{gathered}$	$\begin{gathered} \text { Capsul } \\ \mathrm{e} \end{gathered}$	$\begin{gathered} \text { Capsul } \\ \mathrm{e} \end{gathered}$	$\begin{gathered} \text { Capsul } \\ \text { e } \end{gathered}$
70. Seed No.	5	8	7	8	5	7	9	8	5	8	6	10	8
71. Seed colour*	Brown												
72 Seed length (mm)	4	4	4	4	4	4.5	4	4	4	4	4	4	4
73.Seed width (mm)	2.5	2.5	2	2.5	2	2	2	2	2	2.5	2.5	2.5	2
74 Seed L/W	1.6	1.6	2	1.6	2	2.2	2	2	2	1.6	1.6	1.6	2
75. Areole shape	PG												
76. Vein islet No	3.70	1.85	2.78	2.78	1.39	1.39	0.93	1.39	1.39	2.31	0.93	1.85	1.85
77. Vein let termin. No.	7.41	3.70	6.45	6.48	3.24	2.78	3.24	3.24	3.24	5.09	3.24	3.70	3.70

PG-Polygonal; P-Prominent; NP-Not prominent; IM-Intermediate; D-Droopy; E-Erect *Denotes the monomorphic characters; PR- Pinnately reticulate; MD- Monodelphous; DC-Double cordate; AM- Actinomorphic; S- Salverform; IP-Imparipinnate; P-S angle- Primary-secondary vein angle; S-T anglesecondary vein- tertiary vein angle; DF-Dorsifixed;

## Annexure 2

Table 5. Numerical data table for cluster analysis of different populations of M. pinnata

Character	Population												
	$\begin{gathered} \hline \text { MGM } \\ \text { D-3 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { MGM } \\ & \text { G9/11 } \end{aligned}$	$\begin{gathered} \text { GPW } \\ \text { P-3 } \\ \hline \end{gathered}$	$\begin{gathered} \text { NGN } \\ \text { G-3 } \\ \hline \end{gathered}$	$\begin{gathered} \text { NEM } \\ \text { R-3 } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { BDH } \\ & \text { M-3 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { APR } \\ \text { G-5 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { MTM } \\ & \text { M-5/7 } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { NEK } \\ \text { P-3 } \\ \hline \end{gathered}$	$\begin{gathered} \text { MTN } \\ \text { U-5 } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { GPP } \\ & \text { W-3 } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { MGW } \\ \text { W-7 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { KGK } \\ \text { P-5 } \\ \hline \end{gathered}$
a. Vegetative characters													
Plant habit	3	3	1	3	2	3	1	2	3	2	3	3	2
$\begin{gathered} \hline \text { Plant size } \\ \text { (Nature) } \\ \hline \end{gathered}$	2	2	2	3	3	2	1	1	2	2	2	1	2
Plant height(cm)	2	1	2	3	1	2	3	1	3	2	2	2	1
Leaflet no.	1	4	1	1	1	1	2	3	1	2	1	3	2
Stem trichome	1	1	1	1	1	1	1	1	1	1	1	1	1
Phyllotaxy	1	1	1	1	1	1	1	1	1	1	1	1	1
Leaf venation	1	1	1	1	1	1	1	1	1	1	1	1	1
Leaf texture	2	3	4	3	1	1	1	2	1	3	2	3	3
Leaf form	1	1	1	1	1	1	1	1	1	1	1	1	1
Petiole length (cm)	2	1	2	2	1	3	1	3	1	1	2	1	2
$\begin{aligned} & \text { Leaf length } \\ & (\mathrm{cm}) \end{aligned}$	3	3	2	1	1	3	2	2	1	1	2	2	1
$\begin{aligned} & \text { Leaf width } \\ & (\mathrm{cm}) \end{aligned}$	1	3	1	1	1	1	3	1	3	2	1	1	2
$\begin{gathered} \text { E.leaflet } \\ \text { length }(\mathrm{cm}) \end{gathered}$	3	2	2	1	1	3	1	2	2	1	2	1	1
$\begin{aligned} & \text { E.leaflet width } \\ & (\mathrm{cm}) \end{aligned}$	2	2	1	1	1	1	1	1	1	1	1	2	1
End leaflet apex	2	2	1	2	2	1	2	1	1	1	1	2	2
End leaflet base	1	1	1	1	1	1	1	1	1	1	1	1	1
End leaflet margin	2	2	1	2	1	1	3	3	1	2	3	2	2
E leaflet vein no.	2	2	2	1	2	3	3	2	2	2	2	2	2
Side leaflet length	1	1	1	1	1	1	2	1	1	1	2	1	1
Side leaflet width	3	3	3	3	2	3	2	2	3	2	3	2	1


Side leaflet apex	1	1	1	2	1	1	2	1	1	1	1	2	2
Side leaflet base	1	2	1	1	2	1	2	2	1	2	1	1	2
Side leaflet margin	2	2	3	2	1	1	4	3	1	2	3	2	2
Side leaflet petiolule	2	2	1	2	1	1	2	1	1	2	1	2	1
Side leaflet vein no.	2	2	1	2	2	3	2	3	2	2	1	2	2
Stipules	2	2	2	2	2	2	2	2	2	2	2	2	2
Leaf Trichome	1	1	1	1	1	1	1	1	1	1	1	1	1
P-S angle (a)	2	1	2	2	2	2	2	2	2	2	2	2	2
P-S angle (b)	1	1	2	1	1	1	1	1	2	1	2	2	2
S-T angle	2	2	2	2	2	2	2	2	2	2	2	2	2
Epidermal cell	3	1	3	2	3	1	1	2	3	3	,	1	1
Stomata index	1	1	2	1	1	1	1	3	1	1	2	2	1
Sub. Cells	1	2	2	2	2	2	2	2	2	2	2	2	2
b. Reproductive characters													
No. of flowers in inflo.	1	1	1	1	1	1	2	1	2	1	1	1	1
Corolla type	1	1	1	1	1	1	1	1	1	1	1	1	1
Flower colour	1	1	1	1	1	1	1	1	1	1	1	1	1
Flower symmetry	1	1	1	1	1	1	1	1	1	1	1	1	1
Corolla length (cm)	1	2	1	1	1	2	1	2	2	2	2	2	2
Pedicel	1	1	1	1	1	1	1	1	1	1	1	1	1
No. of sepals	1	1	1	1	1	1	1	1	1	1	1	1	1
Sepal trichome   (u)	1	1	1	1	1	1	1	1	1	1	1	1	1
Sepal trichome   (1)	1	1	1	1	1	1	1	1	1	1	1	1	1
$\begin{aligned} & \text { Sepal length } \\ & (\mathrm{mm}) \end{aligned}$	1	1	2	1	1	2	1	2	1	1	2	1	1
$\begin{aligned} & \hline \text { Sepal width } \\ & (\mathrm{mm}) \end{aligned}$	1	2	1	1	1	1	1	1	1	1	2	1	1
No. of petal	1	1	1	1	1	1	1	1	1	1	1	1	1
$\begin{aligned} & \text { Petal length } \\ & (\mathrm{cm}) \end{aligned}$	1	2	2	1	1	2	1	2	2	3	2	3	3
$\begin{aligned} & \hline \text { Petal width } \\ & (\mathrm{cm}) \end{aligned}$	1	1	3	1	1	2	1	3	3	2	2	3	2
Petal apex	1	1	1	2	1	1	1	1	1	1	1	2	2
Petal margin tri	1	1	1	1	1	1	1	1	1	1	,	1	1
Petal tri lower	1	1	1	1	1	1	1	1	1	1	1	1	1
Petal tri upper	1	1	1	1	1	1	1	1	1	1	1	1	1
Petal venation	1	1	1	1	1	1	1	1	1	1	1	1	1
Androceium type	1	1	1	1	1	1	1	1	1	1	1	1	1
$\begin{aligned} & \text { Stamina tube L } \\ & (\mathrm{cm}) \end{aligned}$	1	2	2	1	1	2	1	2	1	2	1	1	1
Anther fil. Attach.	1	1	1	1	1	1	1	1	1	1	1	1	1
Anther collar attach.	1	1	1	1	1	1	1	1	1	1	1	1	1
Anther apex	1	1	1	1	1	1	1	1	1	1	1	1	1
Stigma appendages	1	1	1	1	1	1	1	1	1	1	1	1	1
Stigma shape	1	1	1	1	1	1	1	1	1	1	1	1	
Style length (cm)	2	3	2	1	1	3	2	3	1	3	3	3	2
Style base	1	1	1	1	1	1	1	1	1	1	1	1	1
Stigma hairs	2	2	2	2	2	2	2	2	2	2	2	2	2
Ovary	1	1	1	1	1	1	1	1	1	1	1	1	1
Placentation	1	1	1	1	1	1	1	1	1	1	1	1	1
Carpel No	1	1	1	1	1	1	1	1	1	1	1	1	1
Fruit type	1	1	1	1	1	1	1	1	1	1	1	1	1
Seed No.	1	2	2	2	2	2	1	2	3	1	2	1	1
Seed colour	1	1	1	1	1	1	1	1	1	1	1	1	1
$\begin{gathered} \text { Seed length } \\ (\mathrm{mm}) \end{gathered}$	2	1	1	1	1	1	1	1	1	1	1	1	1
Seed width (mm)	1	1	2	1	1	2	2	2	2	2	1	1	1

