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Abstract  Examining the impact of climate variability on vegetation dynamics is the missing research element in 
Upper Awash Basin. Hence, the aim of this study was investigating climate variability and their impacts on 
vegetation dynamics. Monthly 250 meter resolution Moderate Imaging Spectro-radiometer (MODIS) Normalized 
difference vegetation Index (NDVI), 1kilometer resolution MODIS Land Surface Temperature (LST), rainfall data 
from 19 meteorological stations, and NINO3.4 (SSTA) were used for this study. A Mann Kendall (MK) trend test 
was used to determine the trend of each dataset using seasonal and annual time-series. Pearson correlation 
coefficient was also used to estimate the association between NDVI and climatic elements. Results of this study 
revealed that there was no significant change in the annual and seasonal NDVI, LST, Sea surface Temperature 
Anomaly (SSTA) and rainfall during the period 2001 to 2016, except NDVI in belg season. The correlation between 
NDVI and rainfall was positive (r = 0.51), strong positive (r= 0.62), low positive (r = 0.45) and low negative  
(r = -0.33) for annual, belg, bega and kiremit seasons, respectively. Similarly, the correlation between NDVI and 
LST was negative (r = - 0.58), strong negative (r= -0.67), negative (r = -0.5) and low positive (r = 0.41) for annual, 
belg, bega and kiremit seasons, respectively. On the other hand, the correlation between NDVI and SSTA was low 
negative (r = - 0.41), weak negative (r= -0.29), weak positive (r = 0.22) and low positive (r = 0.42) for annual, bega, 
belg as well as kiremit seasons, respectively. 

Keywords: climate variability, LST, NDVI, RF, SSTA, upper awash basin 

Cite This Article: Getachew Bayable Tiruneh, Berhan Gessesse, Tulu Besha, and Getachew Workineh, 
“Evaluating the Association between Climate Variability and Vegetation Dynamics by Using Remote Sensing 
Techniques: The Case of Upper Awash Basin, Ethiopia.” World Journal of Agricultural Research, vol. 6, no. 4 
(2018): 153-166. doi: 10.12691/wjar-6-4-6. 

1. Introduction 

Climate variability is one of the most determinant 
factors affecting vegetation condition. There is a strong 
association between climate and vegetation dynamics [1]. 
The variability in climate directly causes change in the 
ecosystem [2,3]. Other studies also revealed the significant 
effect of climate variability on the natural environment 
[4,5]. Vegetation coverage has exhibited the most sensitive 
response to climate variability [6]. This is due to the fact 
that vegetation in terrestrial ecosystems is considered as 
an intermediate link among the biosphere and atmosphere 
of the earth system. Vegetation dynamics and their 
relationship with climate variability have become a hot 
issue at global level [7]. Climate plays a major role  
in vegetation phonological cycles. Vegetation growth  
is functionally dependent on climate. Consequently, a 

change in biophysical parameter of vegetation canopy 
implies a change in climate; accordingly vegetation is 
used as key inputs into many climate change models [8].  

Remote sensing plays an important role in providing  
an effective tool for monitoring different parameters of 
complex ecosystems [9] in many countries like Ethiopia. 
Satellite based vegetation index derivation is one of the 
research approaches to assess climate variability and 
vegetation dynamics of the earth’s surface [10,11]. 
Satellite data are increasingly used to investigate the 
association between vegetation indices and climatic 
parameters [12]. Normalized Difference Vegetation Index 
(NDVI) derived from Coarse to moderate-scale satellite 
image products is considered as reliable indicators of 
vegetation conditions and a proxy of biomass production 
at regional scale [13]. 

Climate variability is the most important cause of food 
insecurity in many part of the world [14]. Hence, it has 
recently become a pressing issue in various development, 
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environment, and political forums at national, regional and 
international levels [15]. In Ethiopia, El Niño has been the 
cause of crop failure, livestock death and food insecurity 
for many years. Since, the rainy season in Upper Awash 
Basin, mostly dependent on El Niño and La Niña events 
occurring in the Tropical Pacific Ocean [16]. Analyzing El 
Niño/La Niña Southern Oscillation episodes together with 
other climatic parameters would be helpful for many 
sectors. However, very limited studies have been conducted 
to assess the impact of El Niño/La Niña Southern 
Oscillation episodes with other climatic parameters on 
vegetation spatio-temporal dynamics in Ethiopia in 
general and in the Upper Awash Basin in particular.  
A recent study conducted by [17] which focus on  
spatio-temporal variability of vegetation cover and main 
climatic elements with El Niño Southern Oscillation 
(ENSO) in north western Ethiopia using geoinformation 
techniques revealed an increase in kiremit and belg 
seasonal vegetation coverage during El Niño episodes 
contrasted to La Niña episodes. However, there has been a 
rainfall delay during El Niño episodes in the first one or 
two months of kiremit season. The association between 
main climatic elements (rainfall and temperature) and 
vegetation dynamics associated with ENSO has not been 
investigated in the study area. Therefore, this study was 
aimed at investigating the association between climate 
variability and vegetation dynamics using remotely sensed 
vegetation products/indices and in-situ meteorological 
observations in the Upper Awash Basin, Ethiopia. 

2. Materials and Methods 

2.1. Study Area 
This study was conducted in the Upper Awash Basin, 

Ethiopia. It is located between 8°16'N - 9° 18' N and  
37° 57'E - 39°17'E. It covers a total area of 10,640.1 km2. 

2.2. Data Types and Sources 
This study used in-situ meteorological data obtained 

from the Ethiopian National Meteorological Agency 
(NMSA) and satellite data acquired from the United States 
Geological Survey (USGS). Weather stations were chosen 
based on data availability and their spatial distribution 
within the study area. However, spatial location of stations 
that records temperature data was distributed unevenly in 
the study area and most stations recorded only rainfall 
data. Due to this, the study used MODIS Land Surface 
Temperature (LST) data instead of using in-situ temperature 
data from National Metrological Agency (NMA). 

2.2.1. Meteorological Dataset Preparation 
The meteorological dataset was checked for its spatial 

and temporal completeness prior to subsequent analysis. 
On top of this, the quality of these data was assessed and 
missing values were replaced by the long-term mean for 
the missing month [18]. 

 
Figure 1. Location map of the Upper Awash Basin 
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In this study, surface map in the form of grid map of 
precipitation for the study area was constructed using the 
geostatistical interpolation method known as ordinary 
kriging [17]. Ordinary kriging relies on spatial correlation 
structure of the data to determine the weighting values 
instead of weighting nearby data points by some power of 
their inverted distance and it is an effective spatial 
interpolation and mapping tool. Because it honors data 
locations provides unbiased estimates at unsampled 
locations and provides for minimum estimation variance. 
It is best linear unbiased estimator [19,20,21]. Ordinary 
kriging is found to be the best method as it produces  
little root mean square error [21,22]. More importantly, 
ordinary krigging technique enables to see the semivariogram 
plots and probability maps to ascertain the model fit  
of prediction function [19] and to have a clue on the 
interpolation error [23]. 
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where Z(Si) is the measured or computed value (for the 
purpose of this study, rainfall) at ith location λi  is an 
unknown weight for the measured value at the ith location, 
is the prediction location while N is the number of 
locations where rainfall is measured. 

In addition to this, mean sea surface temperature (SST) 
anomalies of NINO3.4, NINO3 and NINO4 region  
from National Oceanic and Atmospheric Administration 
(NOAA) satellite mission was used for the analysis to 
understand the association between SST anomalies and 
NDVI, and between SST anomalies and rainfall in the 
Upper Awash Basin. Since NINO 3.4 has characteristics 
of both NINO3 and NINO4, researchers such as [24] and 
[25] recommended to use NINO3.4 SST anomalies. Hence, 
the study has used SST anomalies of NINO3.4 region. To 
be classified as a full-fledged El Niño and La Niña 
episode the NINO3.4 SST anomalies must exceed +0.5 for 
El Niño and less than - 0.5 for La Niña. 

2.2.2. Remote Sensing Data 
This study used sixteen days MODIS composites 

(MOD13Q1) MODIS NDVI (250 m) and 8 days 
composites (MOD11A2 LST (1 km)) time series for time 
scale from 2001 to 2016. The MODIS 250 m NDVI 
product (MOD13Q1) of 16-day composites provided 
vegetation phenology data. MODIS which was launched 
on NASA's earth observing system (EOS) is the most 
important sensor for monitoring the terrestrial ecosystem 
[26]. It is more sensitive to changes in vegetation 
dynamics and was found to be a more accurate and 
versatile instrument to monitor the global vegetation 
conditions than the AVHRR [26,27]. This study has 
primarily used MODIS NDVI data as an indicator for 
providing vegetation properties and associated changes for 
large spatial scale [17,28]. NDVI is derived from MODIS 
bands 1 and 2 as shown below: 
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Where B1 and B2 are the reflectance values yielded  
by the MODIS band1 (red) and band 2 (near infrared), 
respectively. 

2.2.3. Re-projection, Format Conversion and 
Preprocessing of MODIS Datasets 

MODIS products are provided with hierarchical data 
format (HDF), which is not as such compatible to easily 
read and undertake analysis of the vegetation phenology 
and LST data using remote sensing related software 
packages In addition to this, the data is archived with 
global sinusoidal projection system which requires 
appropriate coordinate transformation and projection to 
use the data for regional and local applications with other 
spatial datasets. Therefore, coordinate transformation and 
format conversion is undertaken by using MODIS 
Reprojection Tool (MRT), which is open source 
geospatial software product. 

MODIS NDVI and LST datasets are composite products 
produced by maximum value compositing (MVC). As a 
result datasets inevitably contain disturbances caused by 
some errors such as atmospheric variability [29], aerosol 
scattering [30] and some residual errors [31]. These 
disturbances degrade the data quality and add considerable 
uncertainty to temporal sequences, confusing the analysis 
of temporal image sequences by introducing significant 
variations on the NDVI and LST time series data. Noise 
reduction or fitting a model to observation data is required 
before temporal analysis. Though, there are many types of 
smoothing algorithms [32-38], for this study, Fast Fourier 
Transform (FFT) algorithm [36,38] was adopted. FFT is 
considered as a powerful tool to reproduce NDVI and  
LST time series [36,38] and computes Discrete Fourier 
Transform (DFT) in a very quick way. Fast Fourier 
Transform algorithm was used for the purpose of 
screening and removal of cloud contaminated observations 
and temporal interpolation of the remaining observations 
to reconstruct gapless images at a prescribed temporal 
scale [36,38]. 

2.2.4. Trend Analysis 
Long term NDVI and climatic element trends are good 

indicator to assess the existence of any associated changes 
in vegetation productivity and climatic element variability 
[39]. This study used non-parametric statistical tests,  
the Mann-Kendall trend test to evaluate the statistical 
significance of trends [40,41,42,43] using XLSTAT  
2017. Unlike ordinary least squares regression, the  
Mann-Kendall trend test is less affected by missing values 
and uneven data distribution, and are robust towards 
extreme values and serial dependence [44]. To identify the 
magnitude of trend, Sen’s slope has been calculated 
[43,45,46] which is a form of robust linear regression and 
less affected by gross data errors or outliers compared to 
linear regression analysis [47]. 

The Mann-Kendall test analyzes the sign of the 
difference between later measured data and earlier 
measured data. Each later measured value is compared to 
all values measured earlier; resulting in a total of n (n-1)/2 
possible pairs of data, where n is the total number of 
observations. To perform a Mann-Kendall test, compute 
the difference between the later-measured value and all 
earlier-measured values, (yj-yi), where j>i, and assign the 
integer value of 1, 0, or –1 to positive differences,  
no differences, and negative differences, respectively.  
The test statistic, S, is then computed as the sum of the 
integers: 
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where sign (yj-yi), is equal to +1, 0, or -1 as indicated above 
[47]. When S is a large positive number, later-measured 
values tend to be larger than earlier values and an 
increasing/positive trend is indicated. When S is a large 
negative number, later values tend to be smaller than 
earlier values and a downward trend is indicated. When 
the absolute value of S is small, no trend is indicated. The 
rate of change can be calculated using the Sen Slope 
estimator [48] 

 1 .yj yimedian
xj xi

β
 −

=  − 
 (4) 

For all i < j and i = 1, 2, …, n-1 and j = 2, 3,…, n; in other 
words, computing the slope for all pairs of data that were 
used to compute S. The median of those slopes is the Sen 
slope estimator. 

2.2.5. Correlation Analysis 
This study used Pearson Correlation Coefficient to test 

for a linear relationship between NDVI and climatic elements 
(temperature, precipitation or SST anomalies), and also 
between SST anomalies and Rainfall. The Pearson correlation 
coefficient is a measure of the linear relationship between 
two variables X and Y, giving a value between +1 and  
-1 inclusive, where 1 is total positive correlation, 0  
is no correlation, and -1 is negative correlation. It is 
widely used in the science field as a measure of the  
degree of linear association between two variables [49]. 
Methematically, it can be presented as follows; 
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where rxy is the simple correlation coefficient of variables 
X and Y, Xi is NDVI or SST anomalies of the ith 
year/month, Yi is climatic elements (temperature, 
precipitation or SST anomalies) of the ith year/month; Xm 
is the average NDVI or SST anomalies for all years/month, 
Ym is the average temperature, precipitation or SST 
anomalies for all years/month [50,51]. 

3. Results and Discussion 

3.1. Temporal Changes of Mean Annual 
(NDVI), (LST), (SSTA) and  
Rainfall (RF) Value for Upper Awash 
Basin 

The mean annual estimates of NDVI, LST, SSTA and 
RF have exhibited temporal variability over the study 
period (2001-2016). For instance, LST has a gradient of 
2.77°C; the lowest LST is 28.96°C in 2010 and the highest 
LST is 31.73°C in 2015. From the perspective of 
vegetation dynamics, the NDVI has the lowest mean 
annual value of 0.39 in 2012 and 2015, and highest value 

of 0.43 in 2001 (Figure 2a). In Upper Awash Basin, the 
mean annual estimates of NDVI and LST computed over a 
period of 16 years correspond to 0.41 and 30.16°C, 
respectively. Change curves of annual mean NDVI and 
annual mean LST has been fluctuated in opposite direction 
i.e as the value of LST increases, NDVI value decreases 
and vice versa during the study period. Besides, the 
change curves of annual mean NDVI and annual mean RF 
were fluctuating almost in the same direction i.e as the 
change curve of RF increases, NDVI curve also increases 
(Figure 2b). As described by [52] the NDVI value was 
highly dependent on the seasonal rainfall and low NDVI 
value was indicator of drought in the northwestern 
Ethiopia. As indicated in Figure 2c, the two variables, 
SSTA and RF, are observed to exhibit out-of-phase  
inter-annual oscillation patterns on time scale. SSTA has 
the highest and lowest annual mean values of 1.58 (in 
2015) and -0.83 (in 2010), respectively. Although, RF has 
the highest and lowest mean annual estimates of 96.19 mm 
(in 2010) and 66.24 mm (in 2002), respectively. Change 
curves of annual mean RF and annual mean SST Anomalies 
were fluctuating in opposite direction i.e as the change 
curve of SST Anomalies increases, RF curve decreases 
and vice versa. According to [53], the main reason for inter 
annual variations of rainfall and the NDVI series is the 
Pacific El Niño/Southern Oscillation event, which reaches 
Ethiopia with a time lag of a few months. Similarly, 
change curves of annual mean NDVI and annual mean 
SST Anomalies were fluctuating almost in opposite 
direction i.e as the change curve of SSTA increases, 
NDVI curve decreases and vice versa (Figure 2d). 

Undertaken Mann Kendall trend test indicates that 
overall mean annual values of NDVI and SST Anomalies 
have declined by 0.001 and 0.001°C per year, respectively 
(Table 1). The 𝜌𝜌 -value of the mean annual NDVI and 
SSTA is 0.228 and 0.965, respectively. This indicates that 
the 𝜌𝜌 -values are greater than the significance level α 
(0.05), suggesting that no significant decrement is 
observed in the mean annual estimates of NDVI and SST 
Anomalies at statistical confidence level of 95 %. On the 
contrary, the LST and RF have showed an increment in 
their mean annual estimates by 0.006°C and 0.064 mm per 
annum, respectively. The mean annual values of LST and 
RF have a 𝜌𝜌-value of 0.825 and 1.0, respectively. These 𝜌𝜌-
values are greater than the significance level α (0.05) and 
this suggests that the increment in the mean annual values 
of LST and RF is not significant with the confidence level 
of 95 % over the study period. This indicates that, Upper 
Awash Basin is experiencing highly fluctuating climatic 
variables pattern than its change dimension [54]. This 
result is supported by findings reported by [55] and he has 
confirmed the absence of statistically significant trend for 
NDVI and rainfall in Addis Ababa and Debre Zeit (which 
are parts of our study area) from 1982 to 2006. Other 
studies also support the results of our study. For instance, 
[56] indicated that annual rainfall variability over 
northwestern Ethiopia has no trend he used rain gauge 
data to justify this. Besides, [57] showed that there was no 
trend in annual rainfall in north western dryland of 
Ethiopia (particularly Kaftahumera) over a period of 1983 
to 2014, except the existence of trend in the seasonal 
variability of rainfall. 
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Figure 2. Variation of annual mean LST, NDVI, RF and SSTA of the Upper Awash Basin from 2001 to 2016 

Table 1. Results of the Mann-Kendall trend test for annual mean NDVI, LST, SSTA and RF value for Upper Awash Basin. 

 Kendall's tau S 𝜌𝜌-value (Two-tailed) Alpha Sen's Slope 
Mean NDVI -0.233 -28.000 0.228 0.05 -0.001 
Mean LST 0.050 6.000 0.825 0.05 0.006 
Mean RF 0.010 1.000 1.000 0.05 0.064 

Mean SSTA -0.017 -2.000 0.965 0.05 -0.001 

 
Figure 3. Spatial distribution of the Annual Average NDVI (2001-2016) (a), Annual Average RF (2001-2015) in mm (b) and Annual Average LST 
(2001-2016) in °C (c) 
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3.2. Spatial Distribution of Annual Average 
(NDVI), (LST), and Rainfall (RF) Value 

Based on the MODIS data analysis, the 16 years mean 
annual estimate of NDVI and LST averaged over the 
upper Awash Basin is 0.413 and 0.16°C, respectively. A 
multi-year rainfall data from meteorological stations has a 
mean annual value of 81.83 mm over the time scale 
ranging from 2001 to 2015. On the other hand, the 
western and northwestern part of the sub-basin represents 
the highest mean value of NDVI and RF, and the lowest 
mean value of LST. In contrast, the central, eastern and 
southeastern part of the basin represents the lowest mean 
NDVI value as a consequence of the relatively low annual 
mean rainfall and high annual average land surface 
temperature (Figure 3). Previous study in the same area by 
[27] supports the results of this study. He reported that 
areas exhibiting high temperature are characterized by 
very low vegetation cover and settlement areas. This 
means, areas that are characterized by low temperature 
correspond to sparse and densely populated vegetation. 
There is a spatial variation between NDVI and mean 
annual rainfall in the Upper Awash Basin, with higher 
mean annual rainfall corresponding to higher NDVI. In 
general, lower mean annual LST is coupled with higher 
NDVI in most parts of the basin. 

3.3. Temporal Changes of Kiremit (Main 
Rainy Season) Mean NDVI, LST, SSTA 
and RF Value for Upper Awash Basin 

Over the study period, the mean value of LST for the 
kiremit seasons reached highest and lowest values of 
27.08°C and 23.37°C in 2009 and 2007, respectively. 
Whereas, the mean value of the NDVI for the kiremit 
seasons for the period from 2001 to 2016 has highest and 
lowest values of 0.67 and 0.59 in 2014 and 2010, 
respectively. Change curves of kiremit mean NDVI and 
kiremit mean LST were fluctuating in an opposite 
direction from 2001 to 2008 and in the same direction 
from 2008 to 2016 (Figure 4a). On the other hand, the 

mean values of SST Anomalies (SSTA) for the kiremit 
season has experienced the highest value of 1.82°C in 
2015 and lowest value of -1.19°C in 2010. Also, rainfall 
during the kiremit season has the highest mean value of 
202.33 mm in 2013 and lowest mean value of 145.5 mm 
in 2002. Change curves of kiremit mean RF and kiremit 
mean SST Anomalies were fluctuating in an opposite 
direction in the study period (Figure 4c). 

The mean values of SST Anomalies and LST for the 
kiremit season were declined by 0.02°C and 0.012°C per 
kiremit season, respectively. On the contrary, the mean 
values of the NDVI and RF for the same season have 
increased by 0.001 and 1.007 mm per kiremit season, 
respectively (Table 2). However, observed trends of mean 
kiremit NDVI, LST, SSTA and rainfall were not 
statistically significant ( 𝜌𝜌 value greater than alpha at 95% 
confidence interval). This indicates that, Upper Awash 
Basin is experiencing highly fluctuating climatic variables 
pattern than its change dimension [54]. 

3.4. Spatial Distribution of kiremit Average 
NDVI, LST and RF Value 

The sixteen years NDVI values varied from -0.057 to 
0.81, LST was deviated from 13.81°C to 30.88°C, and the 
amount of RF received was between 153.507 mm to 
202.565 mm across the basin in kiremit season. Rainfall 
was highest in northern and western part of the sub-basin 
and lowest in southern and southeastern part of the region 
(Figure 5b). The spatial distribution of LST is highest in 
central, eastern and southeastern part of the region and 
lowest in northwestern and southwestern part of the region 
(Figure 5c). An investigation done by [27] has shown that 
the spatial distribution of LST and NDVI during kiremit 
season in Upper Awash Basin and he reported that the 
dark green area represents the dense forest around at the 
border of Entoto, Chilimo and Menagesh forest, the 
eastern and southwestern parts of the study area have 
exhibited high temperature, and the area around the 
northern parts and some pockets of land in the southern 
parts exhibit low temperature. 

 
Figure 4. Variation of Kiremt mean LST, NDVI, RF and Mean Kiremt SST Anomalies of the study area from 2000 to 2016 
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Table 2. Results of the Mann-Kendall trend test for kiremit mean NDVI, LST, SSTA and RF value for Upper Awash Basin 

 Kendall's tau S 𝜌𝜌-value (Two-tailed) Alpha Sen's slope 
Mean NDVI 0.151 18.000 0.443 0.05 0.001 
Mean RF 0.200 21.000 0.328 0.05 1.007 
Mean LST -0.033 -4.000 0.894 0.05 -0.012 
SSTA -0.067 -8.000 0.76 0.05 -0.02 

 
Figure 5. Spatial distribution of the kiremit average NDVI (2001-2016) (a), kiremit average RF (2001-2015) in mm (b) and kiremit average LST (2001-
2016) in °C (c) of the Upper Awash Basin 

 
Figure 6. Variation of bega means LST, NDVI, RF and Mean Kiremt SSTA of the study area from 2000 to 2016 
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Table 3. Results of the Mann-Kendall trend test for bega mean NDVI, LST, SSTA and RF value for Upper Awash Basin 

 
Kendall's tau S 𝜌𝜌-value (Two tailed) Alpha Sen's slope 

SSTA -0.050 -6.00 0.82 0.05 -0.01 
Mean RF -0.048 -5.00  0.85 0.05 -0.09 

Mean NDVI 0.133 16.0 0.51 0.05 0.00 
Mean LST 0.025 3.00 0.93 0.05 0.01 

 
3.5. Temporal Changes of Mean Bega (Dry 

Season) NDVI, LST, SSTA and RF Value 
for the Upper Awash Basin 

The highest mean bega LST is 31.79°C in 2012 and the 
lowest mean bega LST is 28.85°C in 2006. The highest 
mean bega NDVI value is 0.44 in 2009 and the lowest mean 
bega NDVI value is 0.37 in 2003 (Figure 6a). Over the study 
period the highest mean bega SSTA is 2.19°C in 2015 and 
the lowest mean bega SSTA is -1.18°C in 2011. The highest 
mean bega RF value is 33.28 mm in 2009 and the lowest 
mean bega RF value is 3.78 mm in 2001 (Figure 6d). 

The mean values of SST Anomalies and RF for the 
bega season showed decrement by 0.01°C and 0.09mm 
per bega season, respectively. In contrary, the mean values 
of LST for the bega season have increased by 0.01°C per 
bega season, but no rate of change for mean values of 
NDVI were observed during bega season from 2001 to 
2016 (Table 3). The Mann-Kendall statistic (S) was -6 for 
mean bega SSTA and -5 for mean bega RF and it indicates 
downward trend, while the Mann-Kendall statistic (S) was 
16 for mean bega NDVI and 3 for mean bega LST and it 
indicates upward trend. In addition to this, Table 3 showed 

that the 𝜌𝜌 -values of mean bega NDVI, LST, SST 
Anomalies and RF is greater than the significance level α 
(0.05), suggesting that the mean bega rainfall and SST 
Anomalies decrement and mean bega LST increment was 
not significant with the confidence level of 95 % over a 
study period of 2001 to 2016. With regard to the NDVI, 
no evidence of significant trend was observed, as the 
computed  𝜌𝜌 -values were found to be greater than the 
critical value at alpha= 0.05. 

3.6. Spatial Distribution of Bega Average 
NDVI, LST and RF Value 

The 16 years NDVI value was ranged from -0.1049 to 
0.788, LST was distributed from 18.67°C to 36.55°C and 
RF was distributed from10.91 mm to 17.12 mm across the 
whole basin in bega season. As shown in Figure 7, the 
highest NDVI was obtained in western, northwestern and 
southwestern part of the basin. Highest RF was also 
recorded in north western part of the basin. The spatial 
distribution of LST during bega season was highest in 
eastern and southeastern part of the region and lowest in 
northern and western part of the basin. 

 
Figure 7. Spatial distribution of bega average NDVI (2001-2016) (a), bega Average RF (2001-2015) in mm (b) and bega Average LST (2001-2016) 
in °C (c) 
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3.7. Temporal Changes of belg (short rainy 
season) Mean NDVI, LST, SSTA and RF 
Value for the Upper Awash Basin 

The results of the temporal analyses revealed that the 
highest mean belg LST is 37.13°C in 2015 and the lowest 
mean belg LST is 30.67 °C in 2010. As well, the highest 
mean belg NDVI value is 0.43 in 2004 and the lowest 
mean belg NDVI value is 0.26 in 2008 and 2015  
(Figure 8a). As indicated in the same figure change curves 
of belg mean NDVI and belg mean LST were fluctuates 
almost in opposite direction i.e as the change curve of 
LST increases, NDVI curve decreases and vice versa. 
Change curves of belg mean NDVI and belg mean RF 
were fluctuates almost in the same direction i.e as the 
change curve of RF increases, NDVI curve also increases 
(Figure 8b). These changes were not uniform across 
observation period that there is also minor period where 
belg NDVI and RF have showed opposite direction of 
change like from 2004 towards 2007. This opposite 
direction of change curve of belg NDVI and RF from 
2004 to 2007 is an indication of variation in vegetation 
productivity which is not in connection to variation in 
precipitation distribution and thus rather linked to other 
contributing factors that disturbed vegetation growth [57]. 
The highest mean belg SST Anomalies is 1.37 in 2016 and 
the lowest mean belg SST Anomalies is -1.17 in 2008 and 
the highest mean belg RF value is 91.87 mm in 2010 and 
the lowest mean belg RF value is 27 mm in 2009 (Figure 8c). 

As presented in Table 4, the mean values of NDVI and 
RF for the belg season have decreased by 0.008 and 
0.923mm per belg season, respectively. The 𝜌𝜌-value of 
mean belg NDVI was 0.026. The 𝜌𝜌- values is less than the 

significance level α (0.05) for mean belg NDVI value, and 
this suggested that the decrement in the mean value of 
NDVI was significant with the confidence level of 95 % 
over a study period of 2001-2016 in belg season. The 𝜌𝜌-
value of mean belg RF was 0.559 and it is greater than the 
significance level α (0.05) suggesting that the belg mean 
rainfall decrement was not significant with the confidence 
level of 95 % over a period of 2001-2015. On the contrary, 
the mean values of LST and SST Anomalies have 
increased by 0.047°C and 0.029°C per belg season, 
respectively. The 𝜌𝜌-values of mean values of LST and 
SSTA are 0.626 and 0.450, respectively for the belg 
season. Furthermore, 𝜌𝜌 - values for LST and SST 
Anomalies are greater than the significance level α (0.05), 
suggesting that the increment in LST and SSTA was not 
significant with the confidence level of 95 % over a study 
period of 2001-2016. 

3.8. Spatial Distribution of belg Average 
NDVI, LST and RF Value 

Results of our analysis showed that the mean values of 
NDVI (within 16 years period), LST (within 16 years 
period) and RF (within 15 years period) are 0.33, 34.88°C 
and 54.63 mm respectively, for the belg season in the 
Upper Awash Basin. Western and northwestern region of 
the basin reflects the highest mean NDVI value as a 
consequence of high belg RF and the low mean LST 
values. On the other hand The central, eastern and 
southeastern part of the basin are showing the lowest 
mean NDVI value as a consequence of the relatively low 
belg mean rainfall and high belg average land surface 
temperature.  

 
Figure 8. Variation of belg means LST, NDVI, RF and SST Anomalies of the Upper Awash Basin from 2001 to 2016 
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Table 4. Results of the Mann-Kendall trend test for belg mean NDVI, LST, SSTA and RF value for Upper Awash Basin 

 Kendall's tau S 𝜌𝜌-value(Two-tailed) Alpha(α) Sen's slope 

Mean NDVI -0.417 -50.0 0.026 0.05 -0.008 

Mean LST 0.100 12.0 0.626 0.05 0.047 

SSTA 0.150 18.0 0.450 0.05 0.029 

Mean RF -0.124 -13.0 0.559 0.05 -0.923 

 
Figure 9. Spatial distribution of the belg average NDVI (2001-2016) (a), belg average RF (2001-2015) in mm (b) and belg average LST (2001-2016) 
in °C (c) 

3.9. Association between NDVI and Climatic 
Elements 

Evaluating the associated climatic elements with NDVI 
is of prime importance to understand how these determinant 
factors affect the vegetation biomass. For instance, the 
availability and distribution of rainfall is among the 
determinant factors for plant productivity in semi-arid 
regions [58]. Additionally, other factors like temperature, 
evapotranspiration and soil properties can affect the 
growth of dry land vegetation [59]. Precipitation and 
temperature directly influence water balance, causing 
changes in soil moisture regime which in turn, influences 
plant growth [18]. 

3.9.1. Association between Annual NDVI and Annual 
Climatic Elements 

Strong positive association between NDVI and rainfall 
over different regions has been reported from earlier 
studies [17,18,60,61,62]. Similarly, this study show that 
the correlation between annual average NDVI and annual 
mean rainfall in the Upper Awash basin was positive 
(r=0.51) with a significance level alpha 0.05. [63] and [64] 
also reported the existence of positive correlation between 
annual NDVI and annual rainfall. They reported that rainfall 
enhanced the vegetation growth. Similar to finding of this 
research [65] have also claimed the positive correlations 
between NDVI and RF in Northeastern Brazil and showed 
the enhancement of vegetation growth by rainfall. 
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Table 5. Correlation coefficients between NDVI and climatic elements and, between SST Anomalies and RF in Upper Awash Basin  

 NDVI vs RF NDVI vs LST NDVI vs SSTA RF vs SSTA LST vs SSTA 

 r 𝜌𝜌 r 𝜌𝜌 r 𝜌𝜌 R 𝜌𝜌 r 𝜌𝜌 
Annual 0.51 0.05 -0.58 0.02 -0.41 0.12 -0.56 0.03 0.57 0.02 

Kiremit -0.33 0.22 0.41 0.11 0.42 0.11 -0.56 0.03 0.69 0.00 

Bega 0.45 0.09 -0.50 0.05 -0.29 0.27 -0.02 0.95 0.07 0.80 

Belg 0.62 0.01 -0.67 0.00 0.22 0.42 0.46 0.09 -0.27 0.31 

 
The correlation between mean annual values of NDVI 

and LST is negative (r= -0.58) with a significance level 
alpha 0.05. Similar to the finding of this study, [61] have 
claimed the negative correlation between NDVI and 
temperature over Tibetan Plateau from 1980 to 2002. This 
implies that, higher temperature causes an increased 
evaporation, and consequently, a lower plant production. 
In general, many studies have reported the negative 
correlation between temperature and vegetation growth. 
The higher LST increases plant respiration and reduce net 
photosynthesis that ultimately results in reduced crop 
yield. USWCL [66] showed that the temperature of the 
canopy is related to plant water stress magnitude. This 
relation is based on the mechanism, by which plants 
transpire water in order to cool their leaves. When there is 
no enough water, transpiration is reduced and leaf 
temperature is increased. Hence moderate negative 
correlation between mean annual NDVI and annual 
average LST indicated that the degree of relation between 
NDVI and LST is an inverse one. The study has also 
indicated that LST constrains vegetation growth. 

The association between annual values of NDVI and 
SST Anomalies across the Upper Awash Basin is low 
negative (r = -0.41) with a significant value of alpha 0.05. 
Similar magnitude of negative correlation was also 
reported by [67] between NDVI and Niño 3 SST 
Anomalies over east and southern Africa. These results 
show the negative impact of ENSO on vegetation growth. 
During La Niña years, the amount of mean annual NDVI 
was higher than El Niño years. That is, the mean annual 
value of NDVI during La Niña (0.41 in 2008 and 0.41 in 
2011) is higher than its mean annual value (0.40 in 2002 
and 0.39 in 2015) during El Niño years. 

3.9.2. Association between Seasonal NDVI  
and Seasonal Climatic Elements 

The strong positive correlations between NDVI  
and rainfall (r=0.62) in belg season indicates that the 
availability of rainfall is one of the major factors that 
determine the density of vegetation (Table 5). However, 
low positive correlation (r=0.45) was obtained for bega 
season. Low negative correlation (r = -0.33) was also 
attained in kiremit season. The negative correlation 
between rainfall and NDVI in kiremit season could be due 
to signal saturation above certain biomass values, to a 
deficit of solar radiation used for the photosynthesis 
because of cloud [68,69]. Some scholars have shown that 
the large amount of rainfall increases the amount of clouds, 
which reduces the solar radiation and decreases the 
temperature [70,71]. Additionally, due to heavy rains that 
manifest the higher rates of run-off, particularly when soil 
is moist [64]. Thus, in the Upper Awash basin, increased 
precipitation during kiremit season can lead to increase 

cloud cover, which inhibits vegetation growth to some 
extent. The correlation between NDVI and RF in belg 
season is higher than kiremit and bega season. This 
indicated that the contribution of RF in vegetation 
coverage increment is higher in belg season than kiremit 
and bega seasons. 

The correlation between NDVI and LST was positive 
(r=0.414) in kiremit, and negative in bega and belg 
corresponding to (r = -0.50) and (r= -0.67), respectively in 
the Upper Awash Basin. However, climate-vegetation 
relationship is complex with nonlinear characteristics. 
Specifically, before the optimum temperature for 
photosynthesis, a temperature rise will enhance vegetation 
growth by an accelerated release of nutrients and 
improved availability from the soil [72]. Similar results 
were observed, in the Upper Awash Basin during kiremit 
season. When temperature significantly increases, however, 
the respiration will be increased and accelerated the 
nutrients consumption, especially in the effect regions of 
negative temperature-vegetation relationship [72] and this 
observed in the bega and belg season for the case of Upper 
Awash Basin. The correlation between NDVI and LST in 
belg season is higher than kiremit and bega season. This 
indicates that the influence of LST on vegetation coverage 
is higher in belg season than kiremit and bega season. 

The correlation between seasonal NDVI and Niño 3.4 
SST Anomalies was negative in bega (r = - 0.29) and positive 
in kiremit and belg accounting for (r = 0.42) and (r=0.22) 
correlation coefficients, respectively (Table 5). In belg (short 
rainy season and kiremit (main rainy season) SST Anomalies 
have positive correlation with NDVI, but the contribution 
of SST Anomalies on NDVI was higher in the main rainy 
season than the short rainy season in Upper Awash Basin. 
On the contrary, in dry season (bega) Niño 3.4 SSTA and 
NDVI has negative correlation, but the contribution is not 
substantial. Similar to the findings of this study, [73] have 
claimed positive correlation between ENSO (Niño 3.4 
SSTA) and NDVI in belg season over northwestern Africa. 

The amount of mean belg NDVI was higher during El 
Niño than La Niña. The mean belg NDVI (0.26 in 2008 
and 0.29 in 2011) during La Niña was less than mean belg 
NDVI (0.32 in 2002 and 37.13 in 2015) corresponding to 
El Niño years. Similarly, the amount of mean kiremit 
NDVI was almost higher during El Niño than La Niña. 
The mean kiremit NDVI (0.61 in 2008 and 0.63.99 in 
2011) during La Niña was less than mean kiremit NDVI 
(0.64 in 2002 and 0.65 in 2015) of El Niño years. In 
contrast, during La Niña years the amount of mean bega 
NDVI was higher than El Niño years. The mean bega 
NDVI (0.41 in 2008 and 0.41 in 2011) determined during 
the La Niña was higher than the corresponding values of 
mean bega NDVI (0.38 in 2002 and 0.39 in 2015) 
obtained for the El Niño period. 
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On the other hand, the correlation between mean annual 
values of rainfall and SST Anomalies was generally 
negative (r = -0.56). Similarly, the correlation between 
mean values of rainfall and SST Anomalies was generally 
negative in kiremit (r = -0.56) and bega (r= -0.02) and 
positive in belg(r=0.46) (Table 5). Similar to the findings 
of current study, an empirical study undertaken by [17] 
reported that SST Anomalies increases the amount of 
rainfall in belg season. Other similar study made by [54] 
showed that the correlation between SST Anomalies and 
RF was negative and positive in kiremit and belg seasons, 
respectively in Upper Awash Basin. This study shows 
positive contribution of SST Anomalies in belg season is 
higher than kiremit and bega seasons. Whereas, SST 
Anomalies and rainfall has moderate negative correlation 
in kiremit season. The results of this study indicate that 
SST Anomalies adversely affects rainfall distribution in 
kiremit season than bega and belg seasons. As described 
by [74] the amount of rainfall in La Niña years was higher 
than El Niño years. Similar result was obtained in this 
study, and the amount of mean annual rainfall was higher 
in La Niña years (85.28mm in 2008 and 77.56mm in 2011) 
than El Niño years (66.24mm in 2002 and 72.21mm in 
2015). During La Niña years, the amount of mean rainfall 
in kiremit season was also higher than El Niño years. 
Mean kiremit rainfall (197.84mm in 2008 and 175.09mm 
in 2011) during La Niña was higher than mean kiremit 
rainfall (145.50mm in 2002 and 162.99mm in 2015) in El 
Niño years. On the contrary, the amount of mean belg 
rainfall was higher in El Niño than La Niña years. Mean 
belg rainfall (33.69mm in 2008 and 43.18mm in 2011) in 
La Niña years was less than mean belg rainfall (39.23mm 
in 2002 and 48.67mm in 2015) during El Niño years. 
Similar, finding was reported by [17] in Gojjam, Ethiopia. 

4. Conclusion 

Quantifying the spatio-temporal pattern of vegetation 
dynamics and climatic variables at the regional scale is 
critical to provide a theoretical basis for evaluating the 
interaction between climate variability and vegetation 
dynamics. There is spatio-temporal variation of vegetation 
cover as a consequence of main climatic elements 
variability (RF and LST) and SST Anomalies in the study 
area. The Mann-Kendall trend test shows that there is no 
significant trend in the annual and seasonal NDVI, LST, 
SST Anomalies and rainfall variability over the basin 
during the period 2001 to 2016, except NDVI values in 
belg season. The contribution of RF in vegetation 
coverage enhancement is higher in belg season than 
kiremit and bega seasons. The negative impact of LST on 
vegetation coverage is also higher in belg season than 
kiremit and bega season. The amount of vegetation 
coverage and rainfall were higher during El Niño episode 
than La Niña episode in belg season. Similarly the amount 
of vegetation coverage in kiremit season was almost 
higher during El Niño years than La Niña years. On the 
other hand during La Niña years, the amount of rainfall in 
kiremit season was higher than El Niño years in the study 
area. As a concluding remark two issues has been 
recommended. El Nino episode increases the amount of 
rainfall in belg season. It is advisable for farmers to sow 

belg crops during El Nino episode. It will be good to 
integrate population dataset for in depth analysis of the 
role of population dynamics and pressure as drivers of 
vegetation changes indicated by the NDVI. 

Acknowledgments 

The success of this research would not have been possible 
without the financial support from Haramaya University, 
which is gratefully acknowledged. Moreover I would like 
to extend my gratitude to the Entoto Observatory and Research 
Center (EORC) and Oda Bultum University for providing 
additional funds for the field research and publication. 

References 
[1] Rechid, D, (2008). On biogeophysical interactions between 

vegetation phenology and climate simulated over Europe, Max 
Planck Institute for Meteorology. 

[2] Cao, M., and Woodward. F.I.. (1998). “Dynamic Responses of 
Terrestrial Ecosystem Carbon Cycling to Global Climate Change.” 
Nature 393: 249-252. 

[3] Pielke, R. A., R. Avissar, M. Raupach, A. J. Dolman, X. Zeng, and 
A.S. Denning. (1998). “Interactions between the Atmosphere and 
Terrestrial Ecosystems: Influence on Weather and Climate.” 
Global Change Biology 4:461 475. 

[4] Suzanvander K.S, (2009). Quantifying vegetation cover changes 
from NDVI time series and determination of main causes for the 
Nile Basin, Master thesis, Delft University of Technology. 

[5] Wang, G.X.; Bai, W.; Li, N.; Hu, H.C (2011). Climate changes 
and its impact on tundra ecosystem in Qinghai-Tibet Plateau, 
China. Clim. Change 2011, 106, 463-482. 

[6] Zavaleta, E. S., M. R. Shaw, N. R. Chiariello, H. A. Mooney, and 
C. B. Field. (2003). “Additive Effects of Simulated Climate 
Changes, Elevated CO2, and Nitrogen Deposition on Grassland 
Diversity.” Proceedings of the National Academy of Sciences of 
the United State of America. 

[7] Rees, M., R. Condit, M. Crawley, S. Pacala, and D. Tilman. 
(2001). “Long-Term Studies of Vegetation Dynamics.”Science 
293: 650-655. 

[8] Ogunbadewa, E. (2013). Climatic Variability Prediction with 
Satellite Remote Sensing and Meteorological Data in the South 
Western Nigeria. Geodesy and Cartography, Volume 39(2): 59-63. 

[9] Zhong L., Yaoming Ma, Mhd. Suhyb Salama and Zhongbo Su 
(2010). Assessment of vegetation dynamics and their response to 
variations in precipitation and temperature in the Tibetan Plateau. 
Climatic Change, 103: 519-535. 

[10] Ahl, D., Gower, S., Burrows, S., Shabanov, N., Myneni, R., 
Knyazikhin, Y. (2006). Monitoring spring canopy phenology of a 
deciduous broad leaf forest using MODIS. Remote Sensing of 
Environment 104(1), 88-95. 

[11] Kulawardhana, R.W.(2008). Determination of spatio-temporal 
variations of vegetation cover, land surface temperature and 
rainfall and their relationships over Sri 59 Lanka using NOAA 
AVHRR data. Master’s Thesis, University of Peradeniya, 
Department of Agricultural Engineering, Sri Lanka. 

[12] Roerink, G.J., Menenti, M., Soepboer, W. & Su, Z. (2003). 
Assessment of climate impact on vegetation dynamics by using 
remote sensing. Phys. Chem. Earth 28, 103-109. 

[13] Zhang, G.; Zhang, Y.; Dong, J.; Xiao, X. (2013). Green-up dates 
in the Tibetan plateau have continuously advanced from 1982 to 
2011. Proc. Natl. Acad. Sci. 2013, 110, 4309-4314. 

[14] Kandji ST, Verchot L, Mackensen J (2006). Climate Change, 
Climate and Variability in Southern Africa: Impacts and 
Adaptation in the Agricultural Sector. Word Agro forestry Centre 
(ICRAF), United Nations Environment Programme (UNEP), 
Nairobi, Kenya, pp. 42. 

[15] Mikias Biazen, (2014). The Effect of Climate Change and 
Variability on the Livelihoods of Local Communities: In the Case 
of Central Rift Valley Region of Ethiopia.  

 



 World Journal of Agricultural Research 165 

[16] Korech D; Barnston A (2007). Predictability of June- September 
Rainfall in Ethiopia, Am Meteorol Soc 135:628-650. 

[17] Getahun YS and Shefne BG (2015). Analysis of Climate 
Variability (ENSO) and Vegetation Dynamics in Gojjam, Ethiopia. 
J Earth Sci Clim Change. 6: 320. 

[18] Souleymane S. (2015). Long -Term Vegetation Dynamics over the 
Bani River Basin as Impacted by Climate Change and Land Use, 
PhD thesis, Kwame Nkrumah University of science and 
Technology, Kumasi 

[19] Hengl, T. (2009). A Practical Guide to Geostatistical Mapping. 
Luxembourg: Office for Official Publications of the European 
Communities. 

[20] Jantakat, Y., and Ongsomwang, S., (2011). Assessing the effect  
of incorporating topographical data with geostatistical 
interpolation for monthly rainfall and temperature in Ping Basin, 
Thailand. Suranaree Journal of Science and Technology 18(2), 
123-139. 

[21] Ly, S., Charles, C. and Degr, A. (2011). Geostatistical 
Interpolation of Daily Rainfall at Catchment Scale; The Use Of 
Several Variogram Models in the Ourthe and Ambleve 
Catchments, Belgium. Hydrology and Earth System Science, 15, 
2259-2274. 

[22] Mair, A. and Fares, A. (2011). Comparison of Rainfall 
Interpolation Methods in a Mountainous Region of aTropical 
Island. Journal of Hydrologic Engineering, 371- 383. 

[23] ITC-ILWIS (2001). Geostatstics in ILWIS 3.0 Academic User’s 
Guide. International Institute for Aerospace Survey and Earth 
Sciences (ITC) Enschede, the Netherlands. 

[24] Babu., A. (2009). "The impact of Pacific sea surface temperature 
on the Ethiopian rainfall". Workshop on High Impact Weather 
Predictability Information Systemfor Africa and AMMA 
THORPEX Forecasters. Trieste, Italy: National Meteorological 
Agency. 

[25] Zaroug, M. (2010), "The connections of Pacific SST and  
drought over East Africa". DEWFORA meeting at ECMWF, 
Improved Drought Early Warning and FORecasting to strengthen 
preparedness and adaptation to droughts in Africa (DEWFORA), 
United Kingdom, 4-5 October 

[26] Justice, C., and Townshend, J. (2002). Special issue on the 
moderate resolution imaging Spectro -radiometer (MODIS): A 
new generation of land surface monitoring, Remote Sensing of 
Environment 83. 

[27] Tesfamariam .E, (2016). Characterizing the Hydro-climatic 
Deficient Moisture to Monitor Agricultural Drought by Using 
Remote Sensing:The Case of Upper Awash Basin, Ethiopia, 
Entoto Observatory and Research Center, Master thesis, Addis 
Ababa University. 

[28] CHEN Yun-Hao, LI Xiao-Bing, SHI Pei-Jun.(2003). Intra- annual 
Vegetation Change Characteristics in the NDVI- Ts Space: 
Application to Farming-Pastoral Zone in North China, Acta 
Botanica Sinica, 2003, 45 (10): 1139-1145. 

[29] Huete, A.R., and Liu, H.Q., (1994). An error and sensitivity 
analysis of the atmospheric- and soil correcting variants of the 
NDVI for the MODIS-EOS, IEEE Transactions on Geoscience 
and Remote Sensing, 32, pp. 897-905. 

[30] Xiao, X.M., Braswell, B., Zhang, Q.Y., Boles, S., and Frolking, S. 
(2003). Sensitivity of vegetation indices to atmospheric aerosols: 
continental-scale observations in northern Asia. Remote Sensing of 
Environment, 84, pp. 385-392. 

[31] Lu, X., Liu, R., and Liang, S. (2007). Removal of noise by wavelet 
method to generate high quality temporal data of terrestrial 
MODIS products. Photogrammetric Engineering and Remote 
Sensing, 73, pp. 1129-1139. 

[32] Jonsson, P and Eklundh, L. (2002). Seasonality extraction by 
function fitting to time-series of satellite sensor data. IEEE Trans 
Geosci Remote Sens. 2002, 40, 1824-1832. 

[33] Beck, P. S. A., Atzberger, C., and Hogda, K. A.(2006). Improved 
monitoring of vegetation dynamics at very high latitudes, a new 
method using MODIS NDVI. Remote Sensing of Environment, 
vol. 100, pp. 321-336. 

[34] Ren, J., Chen, Z., Zhou, Q., and Tang, H.( 2008). Regional yield 
estimation for winter wheat with MODIS-NDVI data in Shandong, 
China.International Journal of Applied Earth Observation and 
Geoinformation, vol.10(2008), pp.403-413. 

[35] Brooks, E.B., Thomas, V.A., Wynne, R.H., Coulston, J.W. (2012). 
Fitting the multitemporal curve: A Fourier series approach to the 

missing data problem in remote sensing analysis. IEEE Trans. 
Geosci. Remote Sens. 2012, 50, 3340-3353. 

[36] Ephraim. R.L. (2015). Time Series Analysis of MODIS NDVI 
data with Cloudy Pixels: Frequency-domain analyses of vegetation 
change in Western Rwanda, Master thesis, University of 
Tennessee. 

[37] Ermias T.D. (2015). Soil hydrological impacts and climatic 
controls of land use and land cover changes in the Upper Blue 
Nile (Abay) basin. PhD Thesis, Delft University of Technology. 

[38] Zhou, J.; Li, J; Menenti, M. (2015). Reconstruction of global 
MODIS NDVI time series: Performance of Harmonic Analysis  
of Time Series (HANTS). Remote Sens. Environ. 2015, 163,  
217-228. 

[39] Souleymane S.T, Tobias L, Eric K. F and Pierre C.S. T (2014). 
Assessing Long-Term Trends in Vegetation Productivity Change 
over the Bani River Basin in Mali (West Africa), Journal of Geography 
and Earth Sciences December 2014, Vol. 2, No. 2, pp. 21-3. 

[40] Ndiritu, J. G., (2005). Long-term trends of heavy rainfall in  
South Africa. Regional hydrological Impacts of Climate  
Change-Hydroclimativ Variability. In: Proceedings of symposium 
S6 held during seventh IAHS Scientific Assembly at Foz do 
Iguacu, Brazil, April 2005. IAHS Publ. 296, pp. 178-183. 

[41] Burns, D. A., Klaus, J., and McHale, M. R.(2007). Recent climate 
trends and implications for water resources in the Catskill 
Mountain region, New York, USA. Journal of Hydrology, vol. 
336(1-2), pp. 155-170. 

[42] He Y, Thomas U, Rasmus F, Dirk P and Patrick H (2012). How 
Normalized Difference Vegetation Index (NDVI) Trends from 
Advanced Very High Resolution (AVHRR) and Système 
Probatoired’Observation de la Terre VEGETATION (SPOT VGT) 
Time Series Differ in Agricultural Areas: An Inner Mongolian 
Case Study. Remote Sens. 2012, 4, 3364-3389. 

[43] Changbin L.; Jiaguo Q.;, Linshan Y.; Shuaibing W; Wenjin Y;, 
Gaofeng Z; Songbing Z;and Feng Z.(2014). Regional vegetation 
dynamics and its response to climate change,a case study in the 
Tao River Basin in Northwestern China, Environmental Research 
Letters, vol. 300, pp.1560-1563. 

[44] Udelhoven, T. (2011). Time Stats: A software tool for the retrieval 
of temporal patterns from global satellite archives. IEEE J. Sel. 
Top. Appl. Earth Obs. Remote Sens. 2011, 4, 310-317. 

[45] Nayak A, Marks D, Chandler D G and Seyfried M (2010). Long-
term snow, climate, and stream flow trends at the reynolds creek 
experimental watershed, Owyhee Mountains, Idaho, United States 
Water Resour. Res. 46 W06519. 

[46] Yin H; Li Z G; Wang Y L and Cai F. (2011). Assessment of 
desertification using time series analysis of hyper- temporal 
vegetation indicator in Inner Mongolia Acta Geographica Sin. 66 
653-61 (in Chinese). 

[47] Bouza-Deano, R., Ternero-Rodriguez, M., Fernandez- Espinosa, 
A.J.(2008). Trend study and assessment of surface water quality in 
the Ebro River (Spain). J. Hydrol. 2008, 361, 227-239. 

[48] Donald W. Meals, Jean Spooner, Steven A. Dressing, and Jon B. 
Harcum. (2011). Statistical analysis for monotonic trends, Tech 
Notes 6, November 2011. Developed for U.S.Environmental 
Protection Agency by Tetra Tech, Inc., Fairfax, VA, 23 p. 

[49] GUO W, NI X, JING D, Shuheng L,(2014). Spatial-temporal 
patterns of vegetation dynamics and their relationships to climate 
variations in Qinghai Lake Basin using MODIS time series data, 
Journal of Geographical Sciences J. Geogr. Sci. 2014, 24(6): 
1009-1021. 

[50] Xu Jianhua. (2002). Mathematical Methods in Contemporary 
Geography. Beijing: High Education Press. (In Chinese). 

[51] Mu Shaojie, Yang Hongfei, Li Jianlong (2013). Spatio- temporal 
dynamics of vegetation coverage and its relationship with climate 
factors in Inner Mongolia, China. Journal of Geographical 
Science, 23 (2): 231-246. 

[52] Yohanis T. (2012). Evapotranspiration using geontcast in-situ data 
streams for drought monitoring and early warning. M.sc thesis, 
ITC, netherlands. 

[53] Mirko G, Brigitta S, Gerd F (2010) Spatiotemporal Variability of 
Land Use and Land Cover in the Abaya - Chamo-Basin, Southern 
Ethiopia since 1981 

[54] Abdisa, A. (2015). Seasonal climate prediction for rain-fed crop 
production planning in the Upper Awash Basin , central high land 
of Ethiopia, Master thesis , Haramaya University. 

 



166 World Journal of Agricultural Research  

[55] Gezahagn N. S.(2016). Spatial Assessment of NDVI as an 
Indicator of Desertification in Ethiopia using Remote Sensing and 
GIS, Master Thesis, Lund University,  

[56] Seleshi,Y.and Zanke,U. (2004). Recent changes in rainfall and 
rainy days in Ethiopia. International Journal of Climatology, 
24(8), 973-983. 

[57] Worku Z. G. (2016). Climate, land use and vegetation trends: 
implication of land use change and climate change on 
Northwestern dry land of Ethiopia, PhD thesis Dresden University, 
Dresden. 

[58] Wang, J., Price, K. P.,and Rich, P. M. (2001). Spatial patterns of 
NDVI in response to precipitation and temperature in the central 
Great Plains. International Journal of Remote Sensing, 22,  
3827-3844. 

[59] Ji, L., and Peters, A. J., (2004). A spatial regression procedure for 
evaluating the relationship between AVHRR- NDVI and climate 
in the northern Great Plains. International Journal of Remote 
Sensing, 25, 297-311. 

[60] Wang, J., Price, K. P.and Rich, P. M., (2003). Temporal responses 
of NDVI to precipitation and temperature in the central Great 
Plains, USA. Int. J. Remote Sensing, 24 (11): 2345-2364. 

[61] Jian S, Genwei C, Weipeng L, Yukun S and Yunchuan Y. (2013). 
On the Variation of NDVI with the Principal Climatic Elements in 
the Tibetan Plateau Remote Sens. 2013, 5, 1894-1911. 

[62] Jiangbo G, Kewei J, Shaohong W, Danyang M, Dongsheng Z, 
Yunhe Y, and Erfu D. (2017). Past and future influence of climate 
change on spatially heterogeneous vegetation activity in China 
Earth Syst. Dynam. Discuss. 2017. 

[63] Esubalew. N.B. (2014). GIS and Remote Sensing techniques 
application to the spatio-temporal climatic variability analysis the 
case of Ziway Dugda and Dodota Woreda, Arsi Zone, Oromia 
Region, Ethiopia, Master thesis , Addis Ababa University. 

[64] Humberto A. Barbosa and T. V. Lakshmi Kumar (2012). 
Strengthening Regional Capacities for Providing Remote Sensing 
Decision Support in Drylands in the Context of Climate 
Variability and Change, International Perspectives on Global 
Environmental Change, Dr. Stephen Young (Ed.), InTech,  

[65] Stefan E., Anne S., Marx P. B. and Joerg M. (2014). Vegetation 
Greenness in Northeastern Brazil and Its Relation to ENSO Warm 
Events, Remote Sens. 2014, 6, 3041-3058. 

[66] USWCL, (2001). Thermal crop water stress index. U.S. water 
conservation laboratory, phoenix, Arizona, from http://www.plant 
stress.com/article/drought. 

[67] Anyamba, A., Tucker, C. J. and Mahoney, R. (2002). From El 
Niño and La Nina: Vegetation response patterns over East  
and Southern Africa during 1997-2000 period, J. Climate, 15, 
3096-3103. 

[68] Camberlin, P., Martiny, N., Philippon, N., Richard, Y. (2007). 
Determinants of the inter annual relationships between remote 
sensed photosynthetic activity and rainfall in tropical Africa, 
Remote Sensing of Environment, 106, 199-216. 

[69] Song, Y., and Ma, M. G., 2008. Variation of AVHRR NDVI and 
its relationship with climate in Chinese arid and cold regions. 
Journal of Remote Sensing, vol. 12(3), pp. 499-505. 

[70] Zhang, Y. H., Fan, G. Z., Li, L. P., Zhou, D. W., Wang, Y. L., and 
Huang, X. L. (2009). Preliminary analysis on the relationships 
betwee NDVI change and its temperature and precipitation in 
southwest China. Plateau and Mountain Meteorology Research, 
29(1), 6-13. (in Chinese) 

[71] Jun DU, Chang-xing S, Chen-di Z. (2013). Modeling and analysis 
of effects of precipitation and vegetation coverage on runoff and 
sediment yield in Jinsha River Basin. Water Scienc and 
Engineering, 2013, 6(1): 44-58. 

[72] Michaletz, S. T., Cheng, D., Kerkhoff, A. J., and Enquist, B. J. 
(2014). Convergence of terrestrial plant production across global 
climate gradients, Nature, 512, 39-43. 

[73] Nathalie P., Aur´elie B., Nad`ege M., Pierre C., Timm H., (2012). 
Timing and patterns of ENSO impacts in Africa over the last 30 
years insights from Normalized Difference Vegetation Index data. 
2012. 

[74] Rajashree, V. and Yashwant B., l. (2014). Response of Rainfall 
and Vegetation to ENSO Events during 2001-2011 in Upper 
Wardha Watershed, Maharashtra, India, J. Hydrol. Eng., 2014, 
19(3): 583-592. 

 

 


